Abstract
The synthesis, thermal and photophysical properties, and solution-processed organic field effect transistors fabricated from a soluble tetraceno[2,3-b] thiophene precursor 1. Compound 1 was synthesised in 9.8% through 6 steps. The TGA profiles showed that a 9.1% weight loss occurred at ca. 130 °C, corresponding to an expulsion of a carbonyl group. The photogeneration of tetraceno[2,3-b]thiophene from 1 in the solution state could be fitted into a first-order rate law with a rate constant (k) of 2.05 × 10-2 s-1 in a yield of 55.6% (±0.9%) under a 1.25 mW cm -2 UV lamp. The platelet micro crystals of 1, formed either by heat or by light, were confirmed by XRD to be identical to a simulated one from reported X-ray crystallographic data. The field effect mobility across a single crystal was measured to be 4.75 × 10-1 cm2 V -1 s-1 with on/off ratio 105. The high purity of single crystals formed both by heat and by light are supported by an EPR analysis. This is the first report of a solution-processed single-crystal OFET of linear acenes without bulky substituent groups. In another experiment, the devices made directly from an amorphous thin film of 1, prepared by spin-coating, exhibited a charge mobility 3.0 × 10-4 cm 2 V-1 s-1 with on/off ratio 103.
Original language | English |
---|---|
Pages (from-to) | 11317-11322 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry |
Volume | 21 |
Issue number | 30 |
DOIs | |
Publication status | Published - Aug 14 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Chemistry