Sparse optimal trajectory design in three-body problem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

A structure of the optimal trajectory for minimizing fuel consumption in an unstable dynamical environment such as the three-body problem is not well studied. Recently, it has been found that a sparse solution structure appears in the optimal control of a dynamical system. The concept of sparsity explains the property that the minimum fuel trajectory corresponds to the trajectory which minimizes the total thrusting time. In this paper, we propose a numerical method to obtain the minimum fuel sparse optimal trajectory in the unstable dynamical system. As an example, proposed methods are applied to the transfer in the Sun-Earth system.

Original languageEnglish
Title of host publicationSpaceflight Mechanics 2019
EditorsFrancesco Topputo, Andrew J. Sinclair, Matthew P. Wilkins, Renato Zanetti
PublisherUnivelt Inc.
Pages2599-2618
Number of pages20
ISBN (Print)9780877036593
Publication statusPublished - Jan 1 2019
Event29th AAS/AIAA Space Flight Mechanics Meeting, 2019 - Maui, United States
Duration: Jan 13 2019Jan 17 2019

Publication series

NameAdvances in the Astronautical Sciences
Volume168
ISSN (Print)0065-3438

Conference

Conference29th AAS/AIAA Space Flight Mechanics Meeting, 2019
Country/TerritoryUnited States
CityMaui
Period1/13/191/17/19

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Sparse optimal trajectory design in three-body problem'. Together they form a unique fingerprint.

Cite this