Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: A nationwide study

Daisuke Onozuka, Akihito Hagihara

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Background: Several studies have reported the burden of climate change on extreme heat-related mortality or morbidity. However, few studies have investigated the spatial and temporal variation in emergency transport during periods of extreme heat on a national scale. Methods: Daily emergency ambulance dispatch data from 2007 to 2010 were acquired from all 47 prefectures of Japan. The temporal variability in the relationship between heat and morbidity in each prefecture was estimated using Poisson regression combined with a distributed lag non-linear model and adjusted for time trends. The spatial variability in the heat-morbidity relationships between prefectures was estimated using a multivariate meta-analysis. Results: A total of 5,289,660 emergency transports were reported during the summer months (June through September) within the study period. The overall cumulative relative risk (RR) at the 99th percentile vs. the minimum morbidity percentile was 1.292 (95% CI: 1.251-1.333) for all causes, 1.039 (95% CI: 0.989-1.091) for cardiovascular diseases, and 1.287 (95% CI: 1.210-1.368) for respiratory diseases. Temporal variation in the estimated effects indicated a non-linear relationship, and there were differences in the temporal variations between heat and all-cause and cause-specific morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p<0.001; I2=45.8%); however, there was no significant spatial heterogeneity for cardiovascular (Cochran Q test, p=0.054; I2=15.1%) and respiratory (Cochran Q test, p=0.681; I2=1.0%) diseases. Conclusions: Our nationwide study demonstrated differences in the spatial and temporal variations in the relative risk for all-cause and cause-specific emergency transport during periods of extreme heat in Japan between 2007 and 2010. Our results suggest that public health strategies aimed at controlling heat-related morbidity should be tailored according to region-specific weather conditions.

Original languageEnglish
Pages (from-to)220-229
Number of pages10
JournalScience of the Total Environment
Volume544
DOIs
Publication statusPublished - Feb 15 2016

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint Dive into the research topics of 'Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: A nationwide study'. Together they form a unique fingerprint.

Cite this