Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions

Kensuke Kimura, Daisuke Yasutake, Atsushi Yamanami, Masaharu Kitano

Research output: Contribution to journalArticle

Abstract

Leaf-boundary-layer conductance (ga), which is mainly affected by airflow near the leaf surface, is an important limiting factor on energy budgets, transpiration and photosynthesis, especially under very light-wind conditions. However, little research has been done, with a focus on the direct evaluation of ga under such conditions, because of the difficulty in measuring slower wind speeds that continuously vary in space and time. Here we propose a reasonable airflow assessment using spatiotemporal analysis of ga, with the aid of numerous artificial leaves facilitating a continuous and multipoint evaluation of ga. In our testing and development of the method, the artificial leaves consisted of thin brass sheets that sandwiched constantan micro heaters, and ga was evaluated on the basis of energy balance of the electrically heated leaves. The analysis was performed within a tomato canopy in a greenhouse under different regimes of environmental controls (air circulation, forced and natural ventilation, heating and air ductwork), thereby allowing the spatiotemporal distributions of ga within the canopy to be determined. The artificial leaves successfully captured the fluctuations in ga affected by the light airflow within the canopy, although ga was overestimated by only 2% (at most 5%) as compared to that of actual leaves owing to the buoyancy effect of electrical heating of the artificial leaves. Thus, without excessive electrical heating, the artificial leaves are considered reliable tools for airflow assessment in the greenhouse. Daytime ga values were small and equivalent to daytime stomatal conductance, even under environmental controls, thus limiting the heat transfer, transpiration and photosynthesis of the leaf. In contrast, night-time ga values were higher values than night-time stomatal conductance, which indicates the small impact of ga on heat and mass exchange via the stomata during the night-time. Spatiotemporal changes in ga substantially varied within the canopy, owing to the different environmental controls. Consequently, remarkable non-uniformities in ga appeared within the canopy, with implications for variable heat and mass exchange. These results indicate that airflow management in the greenhouse can still be improved by spatiotemporal analysis of ga.

Original languageEnglish
Article number107773
JournalAgricultural and Forest Meteorology
Volume280
DOIs
Publication statusPublished - Jan 15 2020

Fingerprint

Solanum lycopersicum
air flow
airflow
boundary layer
canopy
greenhouses
leaves
heat
spatiotemporal analysis
stomatal conductance
heating
transpiration
photosynthesis
environmental control
natural ventilation
brass
air
heaters
stomata
energy budget

All Science Journal Classification (ASJC) codes

  • Forestry
  • Global and Planetary Change
  • Agronomy and Crop Science
  • Atmospheric Science

Cite this

@article{292398914a114f96ba1b4c7811e97588,
title = "Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions",
abstract = "Leaf-boundary-layer conductance (ga), which is mainly affected by airflow near the leaf surface, is an important limiting factor on energy budgets, transpiration and photosynthesis, especially under very light-wind conditions. However, little research has been done, with a focus on the direct evaluation of ga under such conditions, because of the difficulty in measuring slower wind speeds that continuously vary in space and time. Here we propose a reasonable airflow assessment using spatiotemporal analysis of ga, with the aid of numerous artificial leaves facilitating a continuous and multipoint evaluation of ga. In our testing and development of the method, the artificial leaves consisted of thin brass sheets that sandwiched constantan micro heaters, and ga was evaluated on the basis of energy balance of the electrically heated leaves. The analysis was performed within a tomato canopy in a greenhouse under different regimes of environmental controls (air circulation, forced and natural ventilation, heating and air ductwork), thereby allowing the spatiotemporal distributions of ga within the canopy to be determined. The artificial leaves successfully captured the fluctuations in ga affected by the light airflow within the canopy, although ga was overestimated by only 2{\%} (at most 5{\%}) as compared to that of actual leaves owing to the buoyancy effect of electrical heating of the artificial leaves. Thus, without excessive electrical heating, the artificial leaves are considered reliable tools for airflow assessment in the greenhouse. Daytime ga values were small and equivalent to daytime stomatal conductance, even under environmental controls, thus limiting the heat transfer, transpiration and photosynthesis of the leaf. In contrast, night-time ga values were higher values than night-time stomatal conductance, which indicates the small impact of ga on heat and mass exchange via the stomata during the night-time. Spatiotemporal changes in ga substantially varied within the canopy, owing to the different environmental controls. Consequently, remarkable non-uniformities in ga appeared within the canopy, with implications for variable heat and mass exchange. These results indicate that airflow management in the greenhouse can still be improved by spatiotemporal analysis of ga.",
author = "Kensuke Kimura and Daisuke Yasutake and Atsushi Yamanami and Masaharu Kitano",
year = "2020",
month = "1",
day = "15",
doi = "10.1016/j.agrformet.2019.107773",
language = "English",
volume = "280",
journal = "Agricultural and Forest Meteorology",
issn = "0168-1923",
publisher = "Elsevier",

}

TY - JOUR

T1 - Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions

AU - Kimura, Kensuke

AU - Yasutake, Daisuke

AU - Yamanami, Atsushi

AU - Kitano, Masaharu

PY - 2020/1/15

Y1 - 2020/1/15

N2 - Leaf-boundary-layer conductance (ga), which is mainly affected by airflow near the leaf surface, is an important limiting factor on energy budgets, transpiration and photosynthesis, especially under very light-wind conditions. However, little research has been done, with a focus on the direct evaluation of ga under such conditions, because of the difficulty in measuring slower wind speeds that continuously vary in space and time. Here we propose a reasonable airflow assessment using spatiotemporal analysis of ga, with the aid of numerous artificial leaves facilitating a continuous and multipoint evaluation of ga. In our testing and development of the method, the artificial leaves consisted of thin brass sheets that sandwiched constantan micro heaters, and ga was evaluated on the basis of energy balance of the electrically heated leaves. The analysis was performed within a tomato canopy in a greenhouse under different regimes of environmental controls (air circulation, forced and natural ventilation, heating and air ductwork), thereby allowing the spatiotemporal distributions of ga within the canopy to be determined. The artificial leaves successfully captured the fluctuations in ga affected by the light airflow within the canopy, although ga was overestimated by only 2% (at most 5%) as compared to that of actual leaves owing to the buoyancy effect of electrical heating of the artificial leaves. Thus, without excessive electrical heating, the artificial leaves are considered reliable tools for airflow assessment in the greenhouse. Daytime ga values were small and equivalent to daytime stomatal conductance, even under environmental controls, thus limiting the heat transfer, transpiration and photosynthesis of the leaf. In contrast, night-time ga values were higher values than night-time stomatal conductance, which indicates the small impact of ga on heat and mass exchange via the stomata during the night-time. Spatiotemporal changes in ga substantially varied within the canopy, owing to the different environmental controls. Consequently, remarkable non-uniformities in ga appeared within the canopy, with implications for variable heat and mass exchange. These results indicate that airflow management in the greenhouse can still be improved by spatiotemporal analysis of ga.

AB - Leaf-boundary-layer conductance (ga), which is mainly affected by airflow near the leaf surface, is an important limiting factor on energy budgets, transpiration and photosynthesis, especially under very light-wind conditions. However, little research has been done, with a focus on the direct evaluation of ga under such conditions, because of the difficulty in measuring slower wind speeds that continuously vary in space and time. Here we propose a reasonable airflow assessment using spatiotemporal analysis of ga, with the aid of numerous artificial leaves facilitating a continuous and multipoint evaluation of ga. In our testing and development of the method, the artificial leaves consisted of thin brass sheets that sandwiched constantan micro heaters, and ga was evaluated on the basis of energy balance of the electrically heated leaves. The analysis was performed within a tomato canopy in a greenhouse under different regimes of environmental controls (air circulation, forced and natural ventilation, heating and air ductwork), thereby allowing the spatiotemporal distributions of ga within the canopy to be determined. The artificial leaves successfully captured the fluctuations in ga affected by the light airflow within the canopy, although ga was overestimated by only 2% (at most 5%) as compared to that of actual leaves owing to the buoyancy effect of electrical heating of the artificial leaves. Thus, without excessive electrical heating, the artificial leaves are considered reliable tools for airflow assessment in the greenhouse. Daytime ga values were small and equivalent to daytime stomatal conductance, even under environmental controls, thus limiting the heat transfer, transpiration and photosynthesis of the leaf. In contrast, night-time ga values were higher values than night-time stomatal conductance, which indicates the small impact of ga on heat and mass exchange via the stomata during the night-time. Spatiotemporal changes in ga substantially varied within the canopy, owing to the different environmental controls. Consequently, remarkable non-uniformities in ga appeared within the canopy, with implications for variable heat and mass exchange. These results indicate that airflow management in the greenhouse can still be improved by spatiotemporal analysis of ga.

UR - http://www.scopus.com/inward/record.url?scp=85072859057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072859057&partnerID=8YFLogxK

U2 - 10.1016/j.agrformet.2019.107773

DO - 10.1016/j.agrformet.2019.107773

M3 - Article

AN - SCOPUS:85072859057

VL - 280

JO - Agricultural and Forest Meteorology

JF - Agricultural and Forest Meteorology

SN - 0168-1923

M1 - 107773

ER -