Specific ion influences on self-association of pyruvate dehydrogenase kinase isoform 2 (PDHK2), binding of PDHK2 to the L2 lipoyl domain, and effects of the lipoyl group-binding site inhibitor, Nov3r

Yasuaki Hiromasa, Xiaohua Yan, Thomas E. Roche

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of ∼7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a P i-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyllipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.

Original languageEnglish
Pages (from-to)2312-2324
Number of pages13
JournalBiochemistry
Volume47
Issue number8
DOIs
Publication statusPublished - Feb 26 2008
Externally publishedYes

Fingerprint

Binding Sites
Ions
Adenosine Diphosphate
Pyruvic Acid
Catalytic Domain
Adenosine Triphosphate
Dimers
pyruvate dehydrogenase (acetyl-transferring) kinase
Dihydrolipoyllysine-Residue Acetyltransferase
Acetylation
Glutathione Transferase
Inhibitory Concentration 50
Ligands

All Science Journal Classification (ASJC) codes

  • Biochemistry

Cite this

@article{c7d28868488e46138ce3acae2e850d98,
title = "Specific ion influences on self-association of pyruvate dehydrogenase kinase isoform 2 (PDHK2), binding of PDHK2 to the L2 lipoyl domain, and effects of the lipoyl group-binding site inhibitor, Nov3r",
abstract = "Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of ∼7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a P i-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyllipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.",
author = "Yasuaki Hiromasa and Xiaohua Yan and Roche, {Thomas E.}",
year = "2008",
month = "2",
day = "26",
doi = "10.1021/bi7014772",
language = "English",
volume = "47",
pages = "2312--2324",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - Specific ion influences on self-association of pyruvate dehydrogenase kinase isoform 2 (PDHK2), binding of PDHK2 to the L2 lipoyl domain, and effects of the lipoyl group-binding site inhibitor, Nov3r

AU - Hiromasa, Yasuaki

AU - Yan, Xiaohua

AU - Roche, Thomas E.

PY - 2008/2/26

Y1 - 2008/2/26

N2 - Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of ∼7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a P i-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyllipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.

AB - Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of ∼7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a P i-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyllipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.

UR - http://www.scopus.com/inward/record.url?scp=39749140372&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=39749140372&partnerID=8YFLogxK

U2 - 10.1021/bi7014772

DO - 10.1021/bi7014772

M3 - Article

C2 - 18220415

AN - SCOPUS:39749140372

VL - 47

SP - 2312

EP - 2324

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 8

ER -