Spectroscopic and first-principles investigations of iodine species incorporation into ettringite: Implications for iodine migration in cement waste forms

Binglin Guo, Yihuang Xiong, Weinan Chen, Sarah A. Saslow, Naofumi Kozai, Toshihiko Ohnuki, Ismaila Dabo, Keiko Sasaki

Research output: Contribution to journalArticle

2 Citations (Scopus)


Low-level radioactive wastes are commonly immobilized in cementitious materials, where cement-based material can incorporate radionuclides into their crystal structure. Specifically, ettringite (Ca6Al2(OH)12(SO4)3∙26H2O) is known to stabilize anionic species, which is appealing for waste streams with radioactive iodine (129I) that persists as iodide (I–) and iodate (IO3–) in the cementitious nuclear waste repository. However, the structural information and immobilization mechanisms of iodine species in ettringite remain unclear. The present results suggested minimal I– incorporation into ettringite (0.05 %), whereas IO3– exhibited a high affinity for ettringite via anion substitution for SO42– (96 %). The combined iodine K-edge extended X-ray absorption fine structure (EXAFS) spectra and first-principles calculations using density functional theory (DFT) suggested that IO3– was stabilized in ettringite by hydrogen bonding and electrostatic forces. Substituting IO3– for SO42– was energetically favorable by –0.41 eV, whereas unfavorable substitution energy of 4.21 eV was observed for I– substitution. Moreover, the bonding charge density analysis of the substituted IO3– and I– anions into the ettringite structure revealed the interaction between intercalated ions with the structural water molecules. These results provided valuable insight into the long-term stabilization of anionic iodine species and their migration in cementitious nuclear waste repository or alkaline environments.

Original languageEnglish
Article number121880
JournalJournal of Hazardous Materials
Publication statusAccepted/In press - Jan 1 2019


All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Cite this