TY - GEN
T1 - Stability analysis of free hanging riser conveying fluid for ocean thermal energy conversion (OTEC) utilization
AU - Adiputra, Ristiyanto
AU - Utsunomiya, Tomoaki
N1 - Funding Information:
This research is supported by Indonesia Endowment Fund for Education with contract number S-619/LPDP.3/2017.
PY - 2019
Y1 - 2019
N2 - This paper examines the stability of a riser conveying fluid for Ocean Thermal Energy Conversion (OTEC) application by analytical and numerical approaches. Initially, the analytical solution for free hanging riser with fixed end connection is governed by including the components of the riser dynamics. Considering the boundary conditions, the general solution can be obtained using power series expansion. The imaginary and real parts of the solutions are plotted in an Argand diagram which is then used to predict the occurrence of instability. To verify the analytical solution, the dynamic behavior observed in the analytical solution is compared with the one predicted using numerical analysis. The numerical analysis here refers to a coupled analysis between riser and the fluid. After being verified, the analytical model is used to determine the acceptance of the proposed riser designs for 100 MW-Net OTEC power plant. In this paper, there are three materials being investigated which are steel, aluminum and FRP. For the given conditions, the results show that the critical velocity for steel-made riser is only about 0.9 m/s, for aluminum-made riser is about 1.7 m/s and the critical velocity for riser made of FRP is about 2.1 m/s.
AB - This paper examines the stability of a riser conveying fluid for Ocean Thermal Energy Conversion (OTEC) application by analytical and numerical approaches. Initially, the analytical solution for free hanging riser with fixed end connection is governed by including the components of the riser dynamics. Considering the boundary conditions, the general solution can be obtained using power series expansion. The imaginary and real parts of the solutions are plotted in an Argand diagram which is then used to predict the occurrence of instability. To verify the analytical solution, the dynamic behavior observed in the analytical solution is compared with the one predicted using numerical analysis. The numerical analysis here refers to a coupled analysis between riser and the fluid. After being verified, the analytical model is used to determine the acceptance of the proposed riser designs for 100 MW-Net OTEC power plant. In this paper, there are three materials being investigated which are steel, aluminum and FRP. For the given conditions, the results show that the critical velocity for steel-made riser is only about 0.9 m/s, for aluminum-made riser is about 1.7 m/s and the critical velocity for riser made of FRP is about 2.1 m/s.
UR - http://www.scopus.com/inward/record.url?scp=85075843694&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075843694&partnerID=8YFLogxK
U2 - 10.1115/OMAE2019-96749
DO - 10.1115/OMAE2019-96749
M3 - Conference contribution
AN - SCOPUS:85075843694
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019
Y2 - 9 June 2019 through 14 June 2019
ER -