TY - JOUR
T1 - Stanniocalcin 2 is a negative modulator of store-operated calcium entry
AU - Zeiger, William
AU - Ito, Daisuke
AU - Swetlik, Carol
AU - Oh-hora, Masatsugu
AU - Villereal, Mitchel L.
AU - Thinakaran, Gopal
PY - 2011/9
Y1 - 2011/9
N2 - The regulation of cellular Ca 2+ homeostasis is essential for innumerable physiological and pathological processes. Stanniocalcin 1, a secreted glycoprotein hormone originally described in fish, is a well-established endocrine regulator of gill Ca 2+ uptake during hypercalcemia. While there are two mammalian Stanniocalcin homologs (STC1 and STC2), their precise molecular functions remain unknown. Notably, STC2 is a prosurvival component of the unfolded protein response. Here, we demonstrate a cell-intrinsic role for STC2 in the regulation of store-operated Ca 2+ entry (SOCE). Fibroblasts cultured from Stc2 knockout mice accumulate higher levels of cytosolic Ca 2+ following endoplasmic reticulum (ER) Ca 2+ store depletion, specifically due to an increase in extracellular Ca 2+ influx through store-operated Ca 2+ channels (SOC). The knockdown of STC2 expression in a hippocampal cell line also potentiates SOCE, and the overexpression of STC2 attenuates SOCE. Moreover, STC2 interacts with the ER Ca 2+ sensor STIM1, which activates SOCs following ER store depletion. These results define a novel molecular function for STC2 as a negative modulator of SOCE and provide the first direct evidence for the regulation of Ca 2+ homeostasis by mammalian STC2. Furthermore, our findings implicate the modulation of SOCE through STC2 expression as one of the prosurvival measures of the unfolded protein response.
AB - The regulation of cellular Ca 2+ homeostasis is essential for innumerable physiological and pathological processes. Stanniocalcin 1, a secreted glycoprotein hormone originally described in fish, is a well-established endocrine regulator of gill Ca 2+ uptake during hypercalcemia. While there are two mammalian Stanniocalcin homologs (STC1 and STC2), their precise molecular functions remain unknown. Notably, STC2 is a prosurvival component of the unfolded protein response. Here, we demonstrate a cell-intrinsic role for STC2 in the regulation of store-operated Ca 2+ entry (SOCE). Fibroblasts cultured from Stc2 knockout mice accumulate higher levels of cytosolic Ca 2+ following endoplasmic reticulum (ER) Ca 2+ store depletion, specifically due to an increase in extracellular Ca 2+ influx through store-operated Ca 2+ channels (SOC). The knockdown of STC2 expression in a hippocampal cell line also potentiates SOCE, and the overexpression of STC2 attenuates SOCE. Moreover, STC2 interacts with the ER Ca 2+ sensor STIM1, which activates SOCs following ER store depletion. These results define a novel molecular function for STC2 as a negative modulator of SOCE and provide the first direct evidence for the regulation of Ca 2+ homeostasis by mammalian STC2. Furthermore, our findings implicate the modulation of SOCE through STC2 expression as one of the prosurvival measures of the unfolded protein response.
UR - http://www.scopus.com/inward/record.url?scp=80052585788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052585788&partnerID=8YFLogxK
U2 - 10.1128/MCB.05140-11
DO - 10.1128/MCB.05140-11
M3 - Article
C2 - 21746875
AN - SCOPUS:80052585788
SN - 0270-7306
VL - 31
SP - 3710
EP - 3722
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 18
ER -