Stellar core collapse and exotic matter

Ken'ichiro Nakazato, Kohsuke Sumiyoshi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Some supernovae and gamma-ray bursts are thought to accompany a black hole formation. In the process of a black hole formation, a central core becomes hot and dense enough for hyperons and quarks to appear. In this study, we perform neutrino-radiation hydrodynamical simulations of a stellar core collapse and black hole formation taking into account such exotic components. In our computation, general relativity is fully considered under spherical symmetry. As a result, we find that the additional degrees of freedom soften the equation of state of matter and promote the black hole formation. Furthermore, their effects are detectable as a neutrino signal. We believe that the properties of hot and dense matter at extreme conditions are essential for the studies on the astrophysical black hole formation. This study will be hopefully a first step toward a physics of the central engine of gamma-ray bursts.

Original languageEnglish
Title of host publicationDeath of Massive Stars
Subtitle of host publicationSupernovae and Gamma-Ray Bursts
EditorsPeter W. A. San Antonio, Nobuyuki Kawai, Elena Pian
Pages367-368
Number of pages2
EditionS279
DOIs
Publication statusPublished - Apr 1 2011

Publication series

NameProceedings of the International Astronomical Union
NumberS279
Volume7
ISSN (Print)1743-9213
ISSN (Electronic)1743-9221

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Astronomy and Astrophysics
  • Nutrition and Dietetics
  • Public Health, Environmental and Occupational Health
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Stellar core collapse and exotic matter'. Together they form a unique fingerprint.

  • Cite this

    Nakazato, K., & Sumiyoshi, K. (2011). Stellar core collapse and exotic matter. In P. W. A. San Antonio, N. Kawai, & E. Pian (Eds.), Death of Massive Stars: Supernovae and Gamma-Ray Bursts (S279 ed., pp. 367-368). (Proceedings of the International Astronomical Union; Vol. 7, No. S279). https://doi.org/10.1017/S1743921312013385