Stoichiometric effect on electrical, optical, and structural properties of composition-tunable in xGa 1- xAs nanowires

Jared J. Hou, Fengyun Wang, Ning Han, Fei Xiu, Senpo Yip, Ming Fang, Hao Lin, Tak F. Hung, Johnny C. Ho

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


Ternary InGaAs nanowires have recently attracted extensive attention due to their superior electron mobility as well as the ability to tune the band gap for technological applications ranging from high-performance electronics to high-efficiency photovoltaics. However, due to the difficulties in synthesis, there are still considerable challenges to assess the correlation among electrical, optical, and structural properties of this material system across the entire range of compositions. Here, utilizing a simple two-step growth method, we demonstrate the successful synthesis of composition and band gap tunable In xGa 1-xAs alloy nanowires (average diameter = 25-30 nm) by manipulating the source powder mixture ratio and growth parameters. The lattice constants of each NW composition have been well correlated with the chemical stoichiometry and confirmed by high-resolution transmission electron microscopy and X-ray diffraction. Importantly, the as-grown NWs exhibit well-controlled surface morphology and low defect concentration without any phase segregation in all stoichiometric compositions. Moreover, it is found that the electrical nanowire device performances such as the turn-off and I ON/I OFF ratios are improved when the In concentration decreases at a cost of mobility degradation. More generally, this work suggests that a careful stoichiometric design is required for achieving optimal nanowire device performances.

Original languageEnglish
Pages (from-to)9320-9325
Number of pages6
JournalACS nano
Issue number10
Publication statusPublished - Oct 23 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Stoichiometric effect on electrical, optical, and structural properties of composition-tunable in xGa 1- xAs nanowires'. Together they form a unique fingerprint.

Cite this