Strike activity detection and recognition using inertial measurement unit towards kendo skill improvement support system

Yohei Torigoe, Yugo Nakamura, Manato Fujimoto, Yutaka Arakawa, Keiichi Yasumoto

Research output: Contribution to journalArticlepeer-review

Abstract

In the field of sports, there are increasing opportunities to use inertial measurement units (IMUs) to enhance the training process and improve the performance of athletes. We focus on kendo, a traditional martial art using shinai (bamboo swords) in Japan, and propose methods for detecting and recognizing strike activities using IMUs towards realizing a kendo skill improvement support system. We used a sensor data set of strike activities obtained from 14 participants (seven kendo-experienced and seven inexperienced persons). We attached four IMUs to the participants’ right wrist, waist, and shinai (tsuba and saki-gawa). First, to detect the strike activity, we calculated the dynamic time warping (DTW) distance between the training data and the time series data, and detected the strike activity sections. The proposed method detected strike activities with a high accuracy of 95.0%. Next, to recognize the strike activity, we recognized five types (Center-Men, Right-Men, Left-Men, Dō, and Kote). In the person-dependent (PD) case, we achieved an accuracy of 89.5% using data of the right wrist. In the person-independent (PI) case, we achieved an accuracy of 54.9% using IMUs attached to the three positions. These results clarified the points to be improved in the proposed method to realize the support system.

Original languageEnglish
Pages (from-to)651-673
Number of pages23
JournalSensors and Materials
Volume32
Issue number2
DOIs
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation

Fingerprint

Dive into the research topics of 'Strike activity detection and recognition using inertial measurement unit towards kendo skill improvement support system'. Together they form a unique fingerprint.

Cite this