Structural Basis for the Binding Mechanism of Human Serum Albumin Complexed with Cyclic Peptide Dalbavancin

Sho Ito, Akinobu Senoo, Satoru Nagatoishi, Masahito Ohue, Masaki Yamamoto, Kouhei Tsumoto, Naoki Wakui

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Cyclic peptides, with unique structural features, have emerged as new candidates for drug discovery; their association with human serum albumin (HSA; long blood half-life) is crucial to improve drug delivery and avoid renal clearance. Here, we present the crystal structure of HSA complexed with dalbavancin, a clinically used cyclic peptide. Small-angle X-ray scattering and isothermal titration calorimetry experiments showed that the HSA-dalbavancin complex exists in a monomeric state; dalbavancin is only bound to the subdomain IA of HSA in solution. Structural analysis and MD simulation revealed that the swing of Phe70 and movement of the helix near dalbavancin were necessary for binding. The flip of Leu251 promoted the formation of the binding pocket with an induced-fit mechanism; moreover, the movement of the loop region including Glu60 increased the number of noncovalent interactions with HSA. These findings may support the development of new cyclic peptides for clinical use, particularly the elucidation of their binding mechanism to HSA.

Original languageEnglish
Pages (from-to)14045-14053
Number of pages9
JournalJournal of Medicinal Chemistry
Volume63
Issue number22
DOIs
Publication statusPublished - Nov 25 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Drug Discovery

Fingerprint

Dive into the research topics of 'Structural Basis for the Binding Mechanism of Human Serum Albumin Complexed with Cyclic Peptide Dalbavancin'. Together they form a unique fingerprint.

Cite this