TY - JOUR
T1 - Structures and large NLO responses of new electrides
T2 - Li-doped fluorocarbon chain
AU - Xu, Hong Liang
AU - Li, Zhi Ru
AU - Wu, Di
AU - Wang, Bing Qiang
AU - Li, Ying
AU - Gu, Feng Long
AU - Aoki, Yuriko
PY - 2007/3/14
Y1 - 2007/3/14
N2 - An alkali-metal-doped effect on the nonlinear optical (NLO) property in new electrides is studied. The electrides are formed by doping alkali atom Li into a fluorocarbon chain H-(CF2-CH2)3-H. Six stable structures of the Lin-H-(CF2-CH2) 3-H (n = 1, 2) complexes with all real frequencies are obtained at the MP2/6-31+G (d) level. Among these six structures, the largest first static hyperpolarizabilities (β0) are found to be 76 978 au, which is much larger than the β0 value of 112 au for H-(CF 2-CH2)3-H. Clearly, the Li-atom-doped effect on the first hyperpolarizability is dramatic. Three interesting relationships between the structure and β0 value have been observed. (1) For the one-Li-atom-doped systems as well as for the structures with two opposite Li atoms, the shorter the distance between the Li atom and difluoromethyl group, the larger the β0 value. (2) The β0 values of the two-Li-atom-doped chains are much larger than those of the one-Li-atom-doped systems, except for the case of cis-AB where the Li-Li distance (2.847 Å) is close to the bond length of the Li2 molecule (2.672 Å). (3) For the two-Li-atom-doped chains, the β0 value increases as the Li-Li distance increases. These relationships between the structure and β0 value may be beneficial to experimentalists for designing electrides with large NLO responses by using the alkali-metal-doped effect.
AB - An alkali-metal-doped effect on the nonlinear optical (NLO) property in new electrides is studied. The electrides are formed by doping alkali atom Li into a fluorocarbon chain H-(CF2-CH2)3-H. Six stable structures of the Lin-H-(CF2-CH2) 3-H (n = 1, 2) complexes with all real frequencies are obtained at the MP2/6-31+G (d) level. Among these six structures, the largest first static hyperpolarizabilities (β0) are found to be 76 978 au, which is much larger than the β0 value of 112 au for H-(CF 2-CH2)3-H. Clearly, the Li-atom-doped effect on the first hyperpolarizability is dramatic. Three interesting relationships between the structure and β0 value have been observed. (1) For the one-Li-atom-doped systems as well as for the structures with two opposite Li atoms, the shorter the distance between the Li atom and difluoromethyl group, the larger the β0 value. (2) The β0 values of the two-Li-atom-doped chains are much larger than those of the one-Li-atom-doped systems, except for the case of cis-AB where the Li-Li distance (2.847 Å) is close to the bond length of the Li2 molecule (2.672 Å). (3) For the two-Li-atom-doped chains, the β0 value increases as the Li-Li distance increases. These relationships between the structure and β0 value may be beneficial to experimentalists for designing electrides with large NLO responses by using the alkali-metal-doped effect.
UR - http://www.scopus.com/inward/record.url?scp=33947268473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947268473&partnerID=8YFLogxK
U2 - 10.1021/ja068038k
DO - 10.1021/ja068038k
M3 - Article
C2 - 17305338
AN - SCOPUS:33947268473
SN - 0002-7863
VL - 129
SP - 2967
EP - 2970
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 10
ER -