TY - JOUR
T1 - Studies on flibe blanket designs in helical reactor FFHR
AU - Sagara, Akio
AU - Yamanishi, Hirokuni
AU - Uda, Tatsuhiko
AU - Motojima, Osamu
AU - Mitarai, Osamu
AU - Kunugi, Tomoaki
AU - Matsumoto, Youji
AU - Satake, Shin Ichi
AU - Wu, Yican
AU - Terai, Takayuki
AU - Tanaka, Satoru
AU - Matsui, Hideki
AU - Takahasi, Shintaro
AU - Yamamoto, Takuya
AU - Toda, Saburo
AU - Fukada, Satoshi
AU - Nishikawa, Masabumi
AU - Shimizu, Akihiko
AU - Yoshida, Naoaki
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - The self-cooling molten-salt Flibe blanket of FFHR is numerically analyzed, resulting the optimum first wall to be as thin as 5mm and the heat flux up to 0.25MW/m2 to be feasible with adopting V-4Cr-4Ti as the structural material. An alternative concept of free surface using a capillary force is shown to be feasible even in helical systems, where a spiral flow is formed and drastically enhances the heat transfer efficiency. The nuclear property of Flibe blanket is modified with increasing Be amount and adopting carbon reflector, resulting the local TBR of 1.3. As an optional technique, 50% enrichment of Li-6 gives the maximum TBR of 1.4.
AB - The self-cooling molten-salt Flibe blanket of FFHR is numerically analyzed, resulting the optimum first wall to be as thin as 5mm and the heat flux up to 0.25MW/m2 to be feasible with adopting V-4Cr-4Ti as the structural material. An alternative concept of free surface using a capillary force is shown to be feasible even in helical systems, where a spiral flow is formed and drastically enhances the heat transfer efficiency. The nuclear property of Flibe blanket is modified with increasing Be amount and adopting carbon reflector, resulting the local TBR of 1.3. As an optional technique, 50% enrichment of Li-6 gives the maximum TBR of 1.4.
UR - http://www.scopus.com/inward/record.url?scp=6644224001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=6644224001&partnerID=8YFLogxK
U2 - 10.13182/fst01-a11963329
DO - 10.13182/fst01-a11963329
M3 - Article
AN - SCOPUS:6644224001
VL - 39
SP - 753
EP - 757
JO - Fusion Science and Technology
JF - Fusion Science and Technology
SN - 1536-1055
IS - 2
ER -