Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water

Kazue Kurihara, Toyoki Kunitake

Research output: Contribution to journalArticle

74 Citations (Scopus)

Abstract

Very-long-range attraction extending to a separation close to 300 nm was observed between uncharged mica surfaces that are modified by hydrophobic layers of a polymerized ammonium amphiphile. The force distance profile in pure water is expressed by an exponential function composed of intensity parameter and decay length. Their values determined from the deflection method are 1.7 ± 0.5 mN/m and 62 ± 4 nm, respectively. The same parameters obtained from the jump-in method, 0.59 mN/m and 72 nm, agree within the experimental error. This hydrophobic layer is prepared by the Langmuir-Blodgett (LB) deposition in the down-stroke mode (transfer ratio: 0.8) and is stable enough to allow us to study salt effects on the attraction, practically for the first time. The intensity parameter decreases to 0.25 mN/m (from deflection) and 0.18 mN/m (from jump-in) with increasing NaBr concentrations to 10 mM, whereas the decay length remained unchanged at around 60 nm. Interestingly, hydrophobic surfaces prepared by monolayer transfer in the up-stroke mode (transfer ratio: 1.0) display the attraction which extends in pure water to only ca. 30 nm, although their pull-off forces are the same as those for the down-stroke preparations (200-300 mN/m, which corresponds to the interfacial energy of 21-32 mJ/m2). Therefore, the long-range attraction is very sensitive to small structural differences of the hydrophobic surface. The unprecedented long-range attraction cannot be readily accommodated previous explanations which are based on conventional hydration force and cavitation. The concept of “vicinal water” by Drost-Hansen can be an alternative basis of the observed attraction. We propose that the structural correlation of interfacial water extend to the submicron range, if the interface is sufficiently large, molecularly smooth, and strongly hydrophobic. The enhanced structural correlation leads to long-range attraction.

Original languageEnglish
Pages (from-to)10927-10933
Number of pages7
JournalJournal of the American Chemical Society
Volume114
Issue number27
DOIs
Publication statusPublished - Dec 1 1992

Fingerprint

Mica
Monolayers
Water
Amphiphiles
Exponential functions
Ammonium Compounds
Interfacial energy
Cavitation
Hydration
Salts
mica

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water. / Kurihara, Kazue; Kunitake, Toyoki.

In: Journal of the American Chemical Society, Vol. 114, No. 27, 01.12.1992, p. 10927-10933.

Research output: Contribution to journalArticle

@article{59dfa2da0d394d929da3d3e99e30ef4d,
title = "Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water",
abstract = "Very-long-range attraction extending to a separation close to 300 nm was observed between uncharged mica surfaces that are modified by hydrophobic layers of a polymerized ammonium amphiphile. The force distance profile in pure water is expressed by an exponential function composed of intensity parameter and decay length. Their values determined from the deflection method are 1.7 ± 0.5 mN/m and 62 ± 4 nm, respectively. The same parameters obtained from the jump-in method, 0.59 mN/m and 72 nm, agree within the experimental error. This hydrophobic layer is prepared by the Langmuir-Blodgett (LB) deposition in the down-stroke mode (transfer ratio: 0.8) and is stable enough to allow us to study salt effects on the attraction, practically for the first time. The intensity parameter decreases to 0.25 mN/m (from deflection) and 0.18 mN/m (from jump-in) with increasing NaBr concentrations to 10 mM, whereas the decay length remained unchanged at around 60 nm. Interestingly, hydrophobic surfaces prepared by monolayer transfer in the up-stroke mode (transfer ratio: 1.0) display the attraction which extends in pure water to only ca. 30 nm, although their pull-off forces are the same as those for the down-stroke preparations (200-300 mN/m, which corresponds to the interfacial energy of 21-32 mJ/m2). Therefore, the long-range attraction is very sensitive to small structural differences of the hydrophobic surface. The unprecedented long-range attraction cannot be readily accommodated previous explanations which are based on conventional hydration force and cavitation. The concept of “vicinal water” by Drost-Hansen can be an alternative basis of the observed attraction. We propose that the structural correlation of interfacial water extend to the submicron range, if the interface is sufficiently large, molecularly smooth, and strongly hydrophobic. The enhanced structural correlation leads to long-range attraction.",
author = "Kazue Kurihara and Toyoki Kunitake",
year = "1992",
month = "12",
day = "1",
doi = "10.1021/ja00053a033",
language = "English",
volume = "114",
pages = "10927--10933",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "27",

}

TY - JOUR

T1 - Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water

AU - Kurihara, Kazue

AU - Kunitake, Toyoki

PY - 1992/12/1

Y1 - 1992/12/1

N2 - Very-long-range attraction extending to a separation close to 300 nm was observed between uncharged mica surfaces that are modified by hydrophobic layers of a polymerized ammonium amphiphile. The force distance profile in pure water is expressed by an exponential function composed of intensity parameter and decay length. Their values determined from the deflection method are 1.7 ± 0.5 mN/m and 62 ± 4 nm, respectively. The same parameters obtained from the jump-in method, 0.59 mN/m and 72 nm, agree within the experimental error. This hydrophobic layer is prepared by the Langmuir-Blodgett (LB) deposition in the down-stroke mode (transfer ratio: 0.8) and is stable enough to allow us to study salt effects on the attraction, practically for the first time. The intensity parameter decreases to 0.25 mN/m (from deflection) and 0.18 mN/m (from jump-in) with increasing NaBr concentrations to 10 mM, whereas the decay length remained unchanged at around 60 nm. Interestingly, hydrophobic surfaces prepared by monolayer transfer in the up-stroke mode (transfer ratio: 1.0) display the attraction which extends in pure water to only ca. 30 nm, although their pull-off forces are the same as those for the down-stroke preparations (200-300 mN/m, which corresponds to the interfacial energy of 21-32 mJ/m2). Therefore, the long-range attraction is very sensitive to small structural differences of the hydrophobic surface. The unprecedented long-range attraction cannot be readily accommodated previous explanations which are based on conventional hydration force and cavitation. The concept of “vicinal water” by Drost-Hansen can be an alternative basis of the observed attraction. We propose that the structural correlation of interfacial water extend to the submicron range, if the interface is sufficiently large, molecularly smooth, and strongly hydrophobic. The enhanced structural correlation leads to long-range attraction.

AB - Very-long-range attraction extending to a separation close to 300 nm was observed between uncharged mica surfaces that are modified by hydrophobic layers of a polymerized ammonium amphiphile. The force distance profile in pure water is expressed by an exponential function composed of intensity parameter and decay length. Their values determined from the deflection method are 1.7 ± 0.5 mN/m and 62 ± 4 nm, respectively. The same parameters obtained from the jump-in method, 0.59 mN/m and 72 nm, agree within the experimental error. This hydrophobic layer is prepared by the Langmuir-Blodgett (LB) deposition in the down-stroke mode (transfer ratio: 0.8) and is stable enough to allow us to study salt effects on the attraction, practically for the first time. The intensity parameter decreases to 0.25 mN/m (from deflection) and 0.18 mN/m (from jump-in) with increasing NaBr concentrations to 10 mM, whereas the decay length remained unchanged at around 60 nm. Interestingly, hydrophobic surfaces prepared by monolayer transfer in the up-stroke mode (transfer ratio: 1.0) display the attraction which extends in pure water to only ca. 30 nm, although their pull-off forces are the same as those for the down-stroke preparations (200-300 mN/m, which corresponds to the interfacial energy of 21-32 mJ/m2). Therefore, the long-range attraction is very sensitive to small structural differences of the hydrophobic surface. The unprecedented long-range attraction cannot be readily accommodated previous explanations which are based on conventional hydration force and cavitation. The concept of “vicinal water” by Drost-Hansen can be an alternative basis of the observed attraction. We propose that the structural correlation of interfacial water extend to the submicron range, if the interface is sufficiently large, molecularly smooth, and strongly hydrophobic. The enhanced structural correlation leads to long-range attraction.

UR - http://www.scopus.com/inward/record.url?scp=0000480098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000480098&partnerID=8YFLogxK

U2 - 10.1021/ja00053a033

DO - 10.1021/ja00053a033

M3 - Article

AN - SCOPUS:0000480098

VL - 114

SP - 10927

EP - 10933

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 27

ER -