13N-ammonia positron emission tomography-derived left-ventricular strain in patients after heart transplantation validated using cardiovascular magnetic resonance feature tracking as reference

Masateru Kawakubo, Michinobu Nagao, Noriko Kikuchi, Atsushi Yamamoto, Risako Nakao, Yuka Matsuo, Koichiro Kaneko, Eri Watanabe, Masayuki Sasaki, Shinichi Nunoda, Shuji Sakai

Research output: Contribution to journalArticlepeer-review

Abstract

Objective: Heart transplant rejection leads to cardiac allograft vasculopathy (CAV). 13N-ammonia positron emission tomography (PET) can be useful in detecting CAV, as it can evaluate both epicardial vessels and microvasculature. In this study, we evaluated the regional wall motion in heart transplant patients using our PET-specific feature-tracking (FT) algorithm for myocardial strain calculation and validated it using a cardiovascular magnetic resonance (CMR) FT strain as a reference. Methods: A total of 15 heart transplant patients who underwent both 13N-ammonia PET and CMR within 3 months were retrospectively enrolled. The same slice position of short-axis cine images of the middle slice of left ventricle (LV) and the same slice position of horizontal long-axis cine images were selected for the two modalities to measure the circumferential strain (CS) and longitudinal strain (LS), respectively. Based on the FT technique, time–strain curves were calculated by semi-automatic tracking of the endocardial contour on cine images throughout a cardiac cycle. The peak value in the time-strain curve was defined as the representative value. Correlations of CS and LS between PET and CMR were analyzed using Pearson correlation coefficients. The inter-modality error of strain measurements was evaluated using intraclass correlation coefficients (ICCs) with two-way random single measures. Results: Excellent correlations of CS and LS between PET and CMR were observed (CS: r = 0.80; p < 0.01; LS: r = 0.87; p < 0.01). Excellent ICCs were observed (0.89 and 0.85) in CS and LS derived from PET. Conclusions: We propose the first PET strain showing an excellent agreement with the CMR strain and high reproducibility in measurement.

Original languageEnglish
JournalAnnals of Nuclear Medicine
DOIs
Publication statusAccepted/In press - 2021

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of '<sup>13</sup>N-ammonia positron emission tomography-derived left-ventricular strain in patients after heart transplantation validated using cardiovascular magnetic resonance feature tracking as reference'. Together they form a unique fingerprint.

Cite this