Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework

You Gui Huang, Yoshihito Shiota, Ming Yan Wu, Sheng Qun Su, Zi Shuo Yao, Soonchul Kang, Shinji Kanegawa, Guo Ling Li, Shu Qi Wu, Takashi Kamachi, Kazunari Yoshizawa, Katsuhiko Ariga, Mao Chun Hong, Osamu Sato

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

Flexible porous materials generally switch their structures in response to guest removal or incorporation. However, the design of porous materials with empty shape-switchable pores remains a formidable challenge. Here, we demonstrate that the structural transition between an empty orthorhombic phase and an empty tetragonal phase in a flexible porous dodecatuple intercatenated supramolecular organic framework can be controlled cooperatively through guest incorporation and thermal treatment, thus inducing empty shape-memory nanopores. Moreover, the empty orthorhombic phase was observed to exhibit superior thermoelasticity, and the molecular-scale structural mobility could be transmitted to a macroscopic crystal shape change. The driving force of the shape-memory behaviour was elucidated in terms of potential energy. These two interconvertible empty phases with different pore shapes, that is, the orthorhombic phase with rectangular pores and the tetragonal phase with square pores, completely reject or weakly adsorb N 2 at 77 K, respectively.

Original languageEnglish
Article number11564
JournalNature communications
Volume7
DOIs
Publication statusPublished - May 11 2016

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework'. Together they form a unique fingerprint.

Cite this