Suppression of Cavitation Surge in Turbopump With Inducer by Reduced-Diameter Suction Pipe With Swirl Brake

Yohei Tanaka, Takahiro Kitabata, Koichi Nasu, Satoshi Watanabe, Akira Sakata

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Downsizing and high power density of turbopumps is achieved by increasing their rotational speed. Cavitation often becomes a problem while the influence of cavitation will be generally relieved by employing an inducer before the impeller. For general-use turbopumps with an inducer, instability-free operation, as well as high suction performance is required in a wide flow rate range including extremely low flow rate. However, the cavitation surge phenomenon with low frequency and large amplitude is often to be a serious problem even with inducer when operated at very low flow rates. In this study, a reduced-diameter suction pipe (RSP) equipped with swirl brake (SB) was proposed for a suppression device of the inlet backflow as well as of the cavitation surge through removing the swirling velocity component. The effectiveness of this device was investigated by computational fluid dynamics (CFD) and experiments. First, several geometries of RSP with SB were examined by CFD, and it was found that the extension of inlet backflow was stopped at this device provided that the swirl brake had a sufficient radial or axial length. Then, one of the proposed RSP with SB was manufactured, and the experimental evaluation of the effectiveness of this device was conducted. It seemed that RSP with SB could well prevent the extension of inlet backflow. The cavitation surge was completely suppressed even at extremely low flow rates. As a result, the suction performance was also improved at low flow rates.

Original languageEnglish
Article number071205
JournalJournal of Fluids Engineering, Transactions of the ASME
Volume144
Issue number7
DOIs
Publication statusPublished - Jul 1 2022

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Suppression of Cavitation Surge in Turbopump With Inducer by Reduced-Diameter Suction Pipe With Swirl Brake'. Together they form a unique fingerprint.

Cite this