Abstract
We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet-polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J0) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J0 than lines. The J0 increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50nm was approximately 41-fold that of a conventional OLED with a current flow region of 4mm2. The dependence of J0 on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J0.
Original language | English |
---|---|
Article number | 155501 |
Journal | Journal of Applied Physics |
Volume | 118 |
Issue number | 15 |
DOIs | |
Publication status | Published - Oct 21 2015 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)