TY - JOUR
T1 - Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L.
AU - Roeurn, Siranet
AU - Hoshino, Narihiro
AU - Soejima, Ken Taro
AU - Inoue, Yuuka
AU - Cushman, John C.
AU - Agarie, Sakae
N1 - Funding Information:
This work was supported by JSPS KAKENHI [grant number 24580025].
Publisher Copyright:
© 2016 The Author(s).
PY - 2016
Y1 - 2016
N2 - Mesembryanthemum crystallinum L., a halophytic species, displays modified trichomes, epidermal bladder cells (EBC), on the surfaces of its aerial organs. EBCs serve to sequester excessive salt from underlying metabolically active tissues. To elucidate the molecular determinants governing EBC development in the common ice plant, we constructed a cDNA-based suppression subtractive hybridization library and identified genes differentially expressed between the wild-type and the EBC-less mutant. After hybridization, 38 clones were obtained. Among them, 24 clones had homology with plant genes of known functions, whose roles might not be directly related to EBC-morphology, while 14 clones were homologous to genes of unknown functions. After confirmation by northern blot analysis, 12 out of 14 clones of unknown functions were chosen for semi-quantitative RT-PCR analysis, and the results revealed that three clones designated as MW3, MW21, and MW31 preferentially expressed in the EBC-less mutant, whereas the other two designated as WM10 and WM28 preferentially expressed in the wild type. Among these genes, the expression of a putative jasmonate-induced gene, designated as WM28 was completely suppressed in the EBC-mutant. In addition, the deletion of C-box cis-acting element was found in the promoter region of WM28 in the EBC-less mutant. Overexpression of WM28 in Arabidopsis resulted in increased trichome number due to the upregulation of key trichome-related genes GLABRA1 (GL1), and GLABRA3 (GL3). These results demonstrate that WM28 can be an important factor responsible for EBC formation, and also suggest the similarity of developmental mechanism between trichome in Arabidopsis and EBC in common ice plant.
AB - Mesembryanthemum crystallinum L., a halophytic species, displays modified trichomes, epidermal bladder cells (EBC), on the surfaces of its aerial organs. EBCs serve to sequester excessive salt from underlying metabolically active tissues. To elucidate the molecular determinants governing EBC development in the common ice plant, we constructed a cDNA-based suppression subtractive hybridization library and identified genes differentially expressed between the wild-type and the EBC-less mutant. After hybridization, 38 clones were obtained. Among them, 24 clones had homology with plant genes of known functions, whose roles might not be directly related to EBC-morphology, while 14 clones were homologous to genes of unknown functions. After confirmation by northern blot analysis, 12 out of 14 clones of unknown functions were chosen for semi-quantitative RT-PCR analysis, and the results revealed that three clones designated as MW3, MW21, and MW31 preferentially expressed in the EBC-less mutant, whereas the other two designated as WM10 and WM28 preferentially expressed in the wild type. Among these genes, the expression of a putative jasmonate-induced gene, designated as WM28 was completely suppressed in the EBC-mutant. In addition, the deletion of C-box cis-acting element was found in the promoter region of WM28 in the EBC-less mutant. Overexpression of WM28 in Arabidopsis resulted in increased trichome number due to the upregulation of key trichome-related genes GLABRA1 (GL1), and GLABRA3 (GL3). These results demonstrate that WM28 can be an important factor responsible for EBC formation, and also suggest the similarity of developmental mechanism between trichome in Arabidopsis and EBC in common ice plant.
UR - http://www.scopus.com/inward/record.url?scp=85006345158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006345158&partnerID=8YFLogxK
U2 - 10.1080/1343943X.2016.1221320
DO - 10.1080/1343943X.2016.1221320
M3 - Article
AN - SCOPUS:85006345158
SN - 1343-943X
VL - 19
SP - 552
EP - 561
JO - Plant Production Science
JF - Plant Production Science
IS - 4
ER -