TY - JOUR
T1 - Suppressive effect of topically applied CX-659S, a novel diaminouracil derivative, on the contact hypersensitivity reaction in various animal models
AU - Goto, Yuso
AU - Inoue, Yoshifumi
AU - Tsuchiya, Masami
AU - Isobe, Masakazu
AU - Ueno, Takamasa
AU - Uchi, Hiroshi
AU - Furue, Masutaka
AU - Hayashi, Hideya
PY - 2000
Y1 - 2000
N2 - Background: The T-cell-mediated contact hypersensitivity reaction (CHR) is thought to be involved in the pathogenesis of clinical cutaneous disorders including atopic dermatitis. A novel diaminouracil derivative, CX-659S, has been reported to have an inhibitory activity against picryl chloride (PC)-induced CHR when administered either orally or percutaneously. The inhibitory effect of topical CX-659S was assessed in three CHR models in the present study. In addition, to elucidate the mechanism of action of this compound, we examined the effect of CX-659S on the expression of messenger RNAs for proinflammatory cytokines after elicitation in PC models. Methods: For the in vivo evaluation of the efficacy of CX-659S, we used PC- or oxazolone-induced CHR in mice and 2,4-dinitrochlorobenzene (DNCB)-induced CHR in guinea pigs. CX-659S was topically applied immediately after the hapten challenge in each model. To assess the effect on gene expression of cytokines, we used the reverse transcriptase-polymerase chain reaction (RT-PCR), a semiquantitative technique with specific primers. Results: Topical CX-659S dose-dependently inhibited ear swelling at 24 h after the challenge in the two mouse models. This inhibitory effect was histologically confirmed in the PC model. Topically applied CX-659S also inhibited erythema and edema formation 24 h after challenge in the guinea pig model. CX-659S inhibited the expression of mRNA for proinflammatory cytokines IL-1β and TNF-α in vivo. Conclusions: Topically applied CX-659S showed significant inhibitory activities against CHR models both in mice and in guinea pigs. Inhibition profiles of CX-659S toward mRNA expression for proinflammatory cytokines corroborated these findings. CX-659S thus could be a useful therapeutic agent for allergic cutaneous disorders such as allergic contact dermatitis and atopic dermatitis.
AB - Background: The T-cell-mediated contact hypersensitivity reaction (CHR) is thought to be involved in the pathogenesis of clinical cutaneous disorders including atopic dermatitis. A novel diaminouracil derivative, CX-659S, has been reported to have an inhibitory activity against picryl chloride (PC)-induced CHR when administered either orally or percutaneously. The inhibitory effect of topical CX-659S was assessed in three CHR models in the present study. In addition, to elucidate the mechanism of action of this compound, we examined the effect of CX-659S on the expression of messenger RNAs for proinflammatory cytokines after elicitation in PC models. Methods: For the in vivo evaluation of the efficacy of CX-659S, we used PC- or oxazolone-induced CHR in mice and 2,4-dinitrochlorobenzene (DNCB)-induced CHR in guinea pigs. CX-659S was topically applied immediately after the hapten challenge in each model. To assess the effect on gene expression of cytokines, we used the reverse transcriptase-polymerase chain reaction (RT-PCR), a semiquantitative technique with specific primers. Results: Topical CX-659S dose-dependently inhibited ear swelling at 24 h after the challenge in the two mouse models. This inhibitory effect was histologically confirmed in the PC model. Topically applied CX-659S also inhibited erythema and edema formation 24 h after challenge in the guinea pig model. CX-659S inhibited the expression of mRNA for proinflammatory cytokines IL-1β and TNF-α in vivo. Conclusions: Topically applied CX-659S showed significant inhibitory activities against CHR models both in mice and in guinea pigs. Inhibition profiles of CX-659S toward mRNA expression for proinflammatory cytokines corroborated these findings. CX-659S thus could be a useful therapeutic agent for allergic cutaneous disorders such as allergic contact dermatitis and atopic dermatitis.
UR - http://www.scopus.com/inward/record.url?scp=0034512443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034512443&partnerID=8YFLogxK
U2 - 10.1159/000053647
DO - 10.1159/000053647
M3 - Article
C2 - 11146392
AN - SCOPUS:0034512443
SN - 1018-2438
VL - 123
SP - 341
EP - 348
JO - International Archives of Allergy and Immunology
JF - International Archives of Allergy and Immunology
IS - 4
ER -