Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition-fragmentation chain transfer polymerization

Hirokazu Seto, Masaki Takara, Chie Yamashita, Tatsuya Murakami, Takeshi Hasegawa, Yu Hoshino, Yoshiko Miura

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

A novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride. The polymers were immobilized on the surface via the thiol-ene click reaction, known as the Michael addition reaction. Immobilization of the polymers on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy, infrared spectroscopy, and contact angle measurements. The polymer-immobilized surfaces were observed by atomic force microscopy, and the thickness of the polymer layers was determined by ellipsometry. The thickness of the polymer immobilized by the maleimide-thiol reaction was less than that formed by spin coating, except for polystyrene. Moreover, the polymer-immobilized surfaces were relatively smooth with a roughness of less than 1 nm. The amounts of amine, maleimide, and polymer immobilized on the surface were determined by quartz crystal microbalance measurements. The area occupied by the amine-containing silane coupling reagent was significantly less than the theoretical value, suggesting that a multilayer of the silane coupling reagent was formed on the surface. The polymer with low molecular weight had the tendency to efficiently immobilize on the maleimidated surface. When poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces were used as a platform for protein microarrays, strong interactions were detected with the mannose-binding lectin concanavalin A. The specificity of poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces for concanavalin A was compared with poly-l-lysine-coated surfaces. The poly-l-lysine-coated surfaces nonspecifically adsorbed both concanavalin A and bovine serum albumin, while the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface preferentially adsorbed concanavalin A. Moreover, the poly(p-acrylamidophenyl- α-mannoside)-immobilized surface was applied to micropatterning with photolithography. When the micropattern was formed on the poly(p- acrylamidophenyl-α-mannoside)-spin-coated surface by irradiation with ultraviolet light, the pattern of the masking design was not observed on the surface adsorbed with fluorophore-labeled concanavalin A using a fluorescent microscope because of elution of poly(p-acrylamidophenyl-α-mannoside) from the surface. In contrast, fluorophore-labeled concanavalin A was only adsorbed on the shaded region of the poly(p-acrylamidophenyl-α-mannoside)- immobilized surface, resulting in a distinctive fluorescent pattern. The surface modification method using maleimidation and reversible addition-fragmentation chain transfer polymerization can be used for preparing platforms for microarrays and micropatterning of proteins.

Original languageEnglish
Pages (from-to)5125-5133
Number of pages9
JournalACS Applied Materials and Interfaces
Volume4
Issue number10
DOIs
Publication statusPublished - Oct 24 2012

Fingerprint

Functional polymers
Surface treatment
Polymerization
Mannosides
Polymers
Concanavalin A
Sulfhydryl Compounds
Silanes
Fluorophores
carbopol 940
Polystyrenes
Microarrays
Lysine
Amines
Mannose-Binding Lectin
Proteins
Addition reactions
Quartz crystal microbalances

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Cite this

Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition-fragmentation chain transfer polymerization. / Seto, Hirokazu; Takara, Masaki; Yamashita, Chie; Murakami, Tatsuya; Hasegawa, Takeshi; Hoshino, Yu; Miura, Yoshiko.

In: ACS Applied Materials and Interfaces, Vol. 4, No. 10, 24.10.2012, p. 5125-5133.

Research output: Contribution to journalArticle

@article{42cb2e38260c472a8511e743c7e54e1a,
title = "Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition-fragmentation chain transfer polymerization",
abstract = "A novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride. The polymers were immobilized on the surface via the thiol-ene click reaction, known as the Michael addition reaction. Immobilization of the polymers on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy, infrared spectroscopy, and contact angle measurements. The polymer-immobilized surfaces were observed by atomic force microscopy, and the thickness of the polymer layers was determined by ellipsometry. The thickness of the polymer immobilized by the maleimide-thiol reaction was less than that formed by spin coating, except for polystyrene. Moreover, the polymer-immobilized surfaces were relatively smooth with a roughness of less than 1 nm. The amounts of amine, maleimide, and polymer immobilized on the surface were determined by quartz crystal microbalance measurements. The area occupied by the amine-containing silane coupling reagent was significantly less than the theoretical value, suggesting that a multilayer of the silane coupling reagent was formed on the surface. The polymer with low molecular weight had the tendency to efficiently immobilize on the maleimidated surface. When poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces were used as a platform for protein microarrays, strong interactions were detected with the mannose-binding lectin concanavalin A. The specificity of poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces for concanavalin A was compared with poly-l-lysine-coated surfaces. The poly-l-lysine-coated surfaces nonspecifically adsorbed both concanavalin A and bovine serum albumin, while the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface preferentially adsorbed concanavalin A. Moreover, the poly(p-acrylamidophenyl- α-mannoside)-immobilized surface was applied to micropatterning with photolithography. When the micropattern was formed on the poly(p- acrylamidophenyl-α-mannoside)-spin-coated surface by irradiation with ultraviolet light, the pattern of the masking design was not observed on the surface adsorbed with fluorophore-labeled concanavalin A using a fluorescent microscope because of elution of poly(p-acrylamidophenyl-α-mannoside) from the surface. In contrast, fluorophore-labeled concanavalin A was only adsorbed on the shaded region of the poly(p-acrylamidophenyl-α-mannoside)- immobilized surface, resulting in a distinctive fluorescent pattern. The surface modification method using maleimidation and reversible addition-fragmentation chain transfer polymerization can be used for preparing platforms for microarrays and micropatterning of proteins.",
author = "Hirokazu Seto and Masaki Takara and Chie Yamashita and Tatsuya Murakami and Takeshi Hasegawa and Yu Hoshino and Yoshiko Miura",
year = "2012",
month = "10",
day = "24",
doi = "10.1021/am301637q",
language = "English",
volume = "4",
pages = "5125--5133",
journal = "ACS applied materials & interfaces",
issn = "1944-8244",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition-fragmentation chain transfer polymerization

AU - Seto, Hirokazu

AU - Takara, Masaki

AU - Yamashita, Chie

AU - Murakami, Tatsuya

AU - Hasegawa, Takeshi

AU - Hoshino, Yu

AU - Miura, Yoshiko

PY - 2012/10/24

Y1 - 2012/10/24

N2 - A novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride. The polymers were immobilized on the surface via the thiol-ene click reaction, known as the Michael addition reaction. Immobilization of the polymers on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy, infrared spectroscopy, and contact angle measurements. The polymer-immobilized surfaces were observed by atomic force microscopy, and the thickness of the polymer layers was determined by ellipsometry. The thickness of the polymer immobilized by the maleimide-thiol reaction was less than that formed by spin coating, except for polystyrene. Moreover, the polymer-immobilized surfaces were relatively smooth with a roughness of less than 1 nm. The amounts of amine, maleimide, and polymer immobilized on the surface were determined by quartz crystal microbalance measurements. The area occupied by the amine-containing silane coupling reagent was significantly less than the theoretical value, suggesting that a multilayer of the silane coupling reagent was formed on the surface. The polymer with low molecular weight had the tendency to efficiently immobilize on the maleimidated surface. When poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces were used as a platform for protein microarrays, strong interactions were detected with the mannose-binding lectin concanavalin A. The specificity of poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces for concanavalin A was compared with poly-l-lysine-coated surfaces. The poly-l-lysine-coated surfaces nonspecifically adsorbed both concanavalin A and bovine serum albumin, while the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface preferentially adsorbed concanavalin A. Moreover, the poly(p-acrylamidophenyl- α-mannoside)-immobilized surface was applied to micropatterning with photolithography. When the micropattern was formed on the poly(p- acrylamidophenyl-α-mannoside)-spin-coated surface by irradiation with ultraviolet light, the pattern of the masking design was not observed on the surface adsorbed with fluorophore-labeled concanavalin A using a fluorescent microscope because of elution of poly(p-acrylamidophenyl-α-mannoside) from the surface. In contrast, fluorophore-labeled concanavalin A was only adsorbed on the shaded region of the poly(p-acrylamidophenyl-α-mannoside)- immobilized surface, resulting in a distinctive fluorescent pattern. The surface modification method using maleimidation and reversible addition-fragmentation chain transfer polymerization can be used for preparing platforms for microarrays and micropatterning of proteins.

AB - A novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride. The polymers were immobilized on the surface via the thiol-ene click reaction, known as the Michael addition reaction. Immobilization of the polymers on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy, infrared spectroscopy, and contact angle measurements. The polymer-immobilized surfaces were observed by atomic force microscopy, and the thickness of the polymer layers was determined by ellipsometry. The thickness of the polymer immobilized by the maleimide-thiol reaction was less than that formed by spin coating, except for polystyrene. Moreover, the polymer-immobilized surfaces were relatively smooth with a roughness of less than 1 nm. The amounts of amine, maleimide, and polymer immobilized on the surface were determined by quartz crystal microbalance measurements. The area occupied by the amine-containing silane coupling reagent was significantly less than the theoretical value, suggesting that a multilayer of the silane coupling reagent was formed on the surface. The polymer with low molecular weight had the tendency to efficiently immobilize on the maleimidated surface. When poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces were used as a platform for protein microarrays, strong interactions were detected with the mannose-binding lectin concanavalin A. The specificity of poly(p-acrylamidophenyl-α-mannoside)-immobilized surfaces for concanavalin A was compared with poly-l-lysine-coated surfaces. The poly-l-lysine-coated surfaces nonspecifically adsorbed both concanavalin A and bovine serum albumin, while the poly(p-acrylamidophenyl-α-mannoside)-immobilized surface preferentially adsorbed concanavalin A. Moreover, the poly(p-acrylamidophenyl- α-mannoside)-immobilized surface was applied to micropatterning with photolithography. When the micropattern was formed on the poly(p- acrylamidophenyl-α-mannoside)-spin-coated surface by irradiation with ultraviolet light, the pattern of the masking design was not observed on the surface adsorbed with fluorophore-labeled concanavalin A using a fluorescent microscope because of elution of poly(p-acrylamidophenyl-α-mannoside) from the surface. In contrast, fluorophore-labeled concanavalin A was only adsorbed on the shaded region of the poly(p-acrylamidophenyl-α-mannoside)- immobilized surface, resulting in a distinctive fluorescent pattern. The surface modification method using maleimidation and reversible addition-fragmentation chain transfer polymerization can be used for preparing platforms for microarrays and micropatterning of proteins.

UR - http://www.scopus.com/inward/record.url?scp=84867816058&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867816058&partnerID=8YFLogxK

U2 - 10.1021/am301637q

DO - 10.1021/am301637q

M3 - Article

C2 - 23013607

AN - SCOPUS:84867816058

VL - 4

SP - 5125

EP - 5133

JO - ACS applied materials & interfaces

JF - ACS applied materials & interfaces

SN - 1944-8244

IS - 10

ER -