Swirl defect investigation using temperature- and injection-dependent photoluminescence imaging

Amanda Youssef, Jonas Schon, Tim Niewelt, Sebastian Mack, Sungeun Park, Kazuo Nakajima, Kohei Morishita, Ryota Murai, Mallory A. Jensen, Tonio Buonassisi, Martin C. Schubert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The swirl defect is observed in both n-type Czochralski (Cz) and non-contact crucible (NOC) Si wafers. It is postulated to be the outcome of oxygen precipitation during crystal growth and/or post-growth high temperature processes, specifically processes involving temperatures in the range of 800°C-1000°C. This defect is characterized by low lifetime ring-like regions that decrease the device performance. We employ a technique based on temperature- and injection-dependent photoluminescence imaging (TIDPLI) to characterize the swirl defect. We compare the calculated fingerprints of the defects responsible for the swirl pattern observed in both Cz and NOC-Si wafers to determine whether the swirls are caused by the same defect. We find significantly different defect fingerprints for the swirl defects in «-type Cz and NOC-Si. The Shockley-Read-Hall (SRH) description of the Cz-Si defects differ not much from the SRH description of intentionally grown oxygen precipitates, whereas the SRH parameters for the NOC-Si defects differ significantly. Identifying the limiting defect, allows us to suggest methods for its annihilation. We then successfully apply a rapid thermal annealing treatment to dissolve swirl defects in Cz-Si samples and homogenize the lifetime.

Original languageEnglish
Title of host publication2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-5
Number of pages5
ISBN (Electronic)9781509056057
DOIs
Publication statusPublished - May 25 2018
Externally publishedYes
Event44th IEEE Photovoltaic Specialist Conference, PVSC 2017 - Washington, United States
Duration: Jun 25 2017Jun 30 2017

Publication series

Name2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Other

Other44th IEEE Photovoltaic Specialist Conference, PVSC 2017
CountryUnited States
CityWashington
Period6/25/176/30/17

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Swirl defect investigation using temperature- and injection-dependent photoluminescence imaging'. Together they form a unique fingerprint.

  • Cite this

    Youssef, A., Schon, J., Niewelt, T., Mack, S., Park, S., Nakajima, K., Morishita, K., Murai, R., Jensen, M. A., Buonassisi, T., & Schubert, M. C. (2018). Swirl defect investigation using temperature- and injection-dependent photoluminescence imaging. In 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 (pp. 1-5). (2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/PVSC.2017.8366265