Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents

Rino Ishikawa, Ryosuke Iwasawa, Yuichiro Takiyama, Tomokazu Yamauchi, Tetsuo Iwanaga, Makoto Takezaki, Motonori Watanabe, Naozumi Teramoto, Toshiaki Shimasaki, Mitsuhiro Shibata

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

New π-conjugated 1,2-bis(2-aryl-1H-indol-3-yl)ethynes 1a-j having various substituents on the two aryl groups were efficiently synthesized via unusual 5-exo-digonal double isocyanide-acetylene cyclization reactions of 1,4-bis(2-isocyanophenyl)buta-1,3-diyne 3 and aryl Grignard reagents (R-MgBr, R = C6H5 (1a), 4-H3CC6H4 (1b), 2-H3CC6H4 (1c), 3-MeOC6H4 (1d), 3-(CH3)2NC6H4 (1e), 4-F3CC6H4 (1f), 4-FC6H4 (1g), 3-FC6H4 (1h), 4-PhOC6H4 (1i), and 2-Naph (1j)) in 19-85% yields. The UV-vis spectra were rationalized in detail using time-dependent DFT and single point calculations. The fluorescence emission peaks for 1a-j were observed at around 450 nm. Especially for 1f and 1j, those spectra displayed broad emission bands and relatively large Stokes shifts (3977-4503 cm-1), indicating the contribution of an intramolecular charge transfer. The absolute quantum yields (0.50-0.62) of 1a-j were higher than those of parent 8 (0.19) and 2-phenyl-1H-indole (0.11). The electrochemical features for 1a-j were investigated by cyclic voltammetry. The frontier molecular orbital levels for 1a-j were estimated based on the combination of oxidation potentials, UV-vis, and DFT calculated data. The structural property of 1,2-bis(2-phenyl-1H-indol-3-yl)ethyne 1a was characterized by several spectroscopic methods and finally determined by X-ray analysis of a single crystal of 1a recrystallized from ethyl acetate. The structural features of 1a-j were also supported by DFT calculations.

Original languageEnglish
Pages (from-to)652-663
Number of pages12
JournalJournal of Organic Chemistry
Volume82
Issue number1
DOIs
Publication statusPublished - Jan 6 2017

Fingerprint

Acetylene
Cyclization
Discrete Fourier transforms
X ray analysis
Cyanides
Quantum yield
Molecular orbitals
Cyclic voltammetry
Charge transfer
Structural properties
Fluorescence
Single crystals
Oxidation

All Science Journal Classification (ASJC) codes

  • Organic Chemistry

Cite this

Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents. / Ishikawa, Rino; Iwasawa, Ryosuke; Takiyama, Yuichiro; Yamauchi, Tomokazu; Iwanaga, Tetsuo; Takezaki, Makoto; Watanabe, Motonori; Teramoto, Naozumi; Shimasaki, Toshiaki; Shibata, Mitsuhiro.

In: Journal of Organic Chemistry, Vol. 82, No. 1, 06.01.2017, p. 652-663.

Research output: Contribution to journalArticle

Ishikawa, Rino ; Iwasawa, Ryosuke ; Takiyama, Yuichiro ; Yamauchi, Tomokazu ; Iwanaga, Tetsuo ; Takezaki, Makoto ; Watanabe, Motonori ; Teramoto, Naozumi ; Shimasaki, Toshiaki ; Shibata, Mitsuhiro. / Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents. In: Journal of Organic Chemistry. 2017 ; Vol. 82, No. 1. pp. 652-663.
@article{f29b17baa2c741d4bd97e910861ebbec,
title = "Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents",
abstract = "New π-conjugated 1,2-bis(2-aryl-1H-indol-3-yl)ethynes 1a-j having various substituents on the two aryl groups were efficiently synthesized via unusual 5-exo-digonal double isocyanide-acetylene cyclization reactions of 1,4-bis(2-isocyanophenyl)buta-1,3-diyne 3 and aryl Grignard reagents (R-MgBr, R = C6H5 (1a), 4-H3CC6H4 (1b), 2-H3CC6H4 (1c), 3-MeOC6H4 (1d), 3-(CH3)2NC6H4 (1e), 4-F3CC6H4 (1f), 4-FC6H4 (1g), 3-FC6H4 (1h), 4-PhOC6H4 (1i), and 2-Naph (1j)) in 19-85{\%} yields. The UV-vis spectra were rationalized in detail using time-dependent DFT and single point calculations. The fluorescence emission peaks for 1a-j were observed at around 450 nm. Especially for 1f and 1j, those spectra displayed broad emission bands and relatively large Stokes shifts (3977-4503 cm-1), indicating the contribution of an intramolecular charge transfer. The absolute quantum yields (0.50-0.62) of 1a-j were higher than those of parent 8 (0.19) and 2-phenyl-1H-indole (0.11). The electrochemical features for 1a-j were investigated by cyclic voltammetry. The frontier molecular orbital levels for 1a-j were estimated based on the combination of oxidation potentials, UV-vis, and DFT calculated data. The structural property of 1,2-bis(2-phenyl-1H-indol-3-yl)ethyne 1a was characterized by several spectroscopic methods and finally determined by X-ray analysis of a single crystal of 1a recrystallized from ethyl acetate. The structural features of 1a-j were also supported by DFT calculations.",
author = "Rino Ishikawa and Ryosuke Iwasawa and Yuichiro Takiyama and Tomokazu Yamauchi and Tetsuo Iwanaga and Makoto Takezaki and Motonori Watanabe and Naozumi Teramoto and Toshiaki Shimasaki and Mitsuhiro Shibata",
year = "2017",
month = "1",
day = "6",
doi = "10.1021/acs.joc.6b02668",
language = "English",
volume = "82",
pages = "652--663",
journal = "Journal of Organic Chemistry",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - Synthesis of 1,2-Bis(2-aryl-1H-indol-3-yl)ethynes via 5-exo-Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents

AU - Ishikawa, Rino

AU - Iwasawa, Ryosuke

AU - Takiyama, Yuichiro

AU - Yamauchi, Tomokazu

AU - Iwanaga, Tetsuo

AU - Takezaki, Makoto

AU - Watanabe, Motonori

AU - Teramoto, Naozumi

AU - Shimasaki, Toshiaki

AU - Shibata, Mitsuhiro

PY - 2017/1/6

Y1 - 2017/1/6

N2 - New π-conjugated 1,2-bis(2-aryl-1H-indol-3-yl)ethynes 1a-j having various substituents on the two aryl groups were efficiently synthesized via unusual 5-exo-digonal double isocyanide-acetylene cyclization reactions of 1,4-bis(2-isocyanophenyl)buta-1,3-diyne 3 and aryl Grignard reagents (R-MgBr, R = C6H5 (1a), 4-H3CC6H4 (1b), 2-H3CC6H4 (1c), 3-MeOC6H4 (1d), 3-(CH3)2NC6H4 (1e), 4-F3CC6H4 (1f), 4-FC6H4 (1g), 3-FC6H4 (1h), 4-PhOC6H4 (1i), and 2-Naph (1j)) in 19-85% yields. The UV-vis spectra were rationalized in detail using time-dependent DFT and single point calculations. The fluorescence emission peaks for 1a-j were observed at around 450 nm. Especially for 1f and 1j, those spectra displayed broad emission bands and relatively large Stokes shifts (3977-4503 cm-1), indicating the contribution of an intramolecular charge transfer. The absolute quantum yields (0.50-0.62) of 1a-j were higher than those of parent 8 (0.19) and 2-phenyl-1H-indole (0.11). The electrochemical features for 1a-j were investigated by cyclic voltammetry. The frontier molecular orbital levels for 1a-j were estimated based on the combination of oxidation potentials, UV-vis, and DFT calculated data. The structural property of 1,2-bis(2-phenyl-1H-indol-3-yl)ethyne 1a was characterized by several spectroscopic methods and finally determined by X-ray analysis of a single crystal of 1a recrystallized from ethyl acetate. The structural features of 1a-j were also supported by DFT calculations.

AB - New π-conjugated 1,2-bis(2-aryl-1H-indol-3-yl)ethynes 1a-j having various substituents on the two aryl groups were efficiently synthesized via unusual 5-exo-digonal double isocyanide-acetylene cyclization reactions of 1,4-bis(2-isocyanophenyl)buta-1,3-diyne 3 and aryl Grignard reagents (R-MgBr, R = C6H5 (1a), 4-H3CC6H4 (1b), 2-H3CC6H4 (1c), 3-MeOC6H4 (1d), 3-(CH3)2NC6H4 (1e), 4-F3CC6H4 (1f), 4-FC6H4 (1g), 3-FC6H4 (1h), 4-PhOC6H4 (1i), and 2-Naph (1j)) in 19-85% yields. The UV-vis spectra were rationalized in detail using time-dependent DFT and single point calculations. The fluorescence emission peaks for 1a-j were observed at around 450 nm. Especially for 1f and 1j, those spectra displayed broad emission bands and relatively large Stokes shifts (3977-4503 cm-1), indicating the contribution of an intramolecular charge transfer. The absolute quantum yields (0.50-0.62) of 1a-j were higher than those of parent 8 (0.19) and 2-phenyl-1H-indole (0.11). The electrochemical features for 1a-j were investigated by cyclic voltammetry. The frontier molecular orbital levels for 1a-j were estimated based on the combination of oxidation potentials, UV-vis, and DFT calculated data. The structural property of 1,2-bis(2-phenyl-1H-indol-3-yl)ethyne 1a was characterized by several spectroscopic methods and finally determined by X-ray analysis of a single crystal of 1a recrystallized from ethyl acetate. The structural features of 1a-j were also supported by DFT calculations.

UR - http://www.scopus.com/inward/record.url?scp=85017682490&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017682490&partnerID=8YFLogxK

U2 - 10.1021/acs.joc.6b02668

DO - 10.1021/acs.joc.6b02668

M3 - Article

C2 - 27982589

AN - SCOPUS:85017682490

VL - 82

SP - 652

EP - 663

JO - Journal of Organic Chemistry

JF - Journal of Organic Chemistry

SN - 0022-3263

IS - 1

ER -