Synthesis of Fe based metallic glass-Pd based metallic glass composite by slightly pressured liquid phase sintering

N. Yodoshi, R. Yamada, N. Morita, A. Kawasaki, R. Watanabe

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

To consolidate [(Fe0.5Co0.5)0.75Si 0.05B0.2]96Nb4 metallic glass powder to full density, a pressurized liquid phase sintering was employed, which was intended to promote densification by an enhanced wetting of a liquid phase with solid particles. Pd42.5Ni7.5P20Cu30 metallic glass powder, which has been reported to have a high glass forming ability and the lowest critical cooling rate of glass formation of 0.067 K/s, was chosen as a liquid phase component. The melting point of the Pd 42.5Ni7.5P20Cu30 metallic glass alloy of 763 K is lower than the glass transition temperature of the [(Fe 0.5Co0.5)0.75Si0.05B 0.2]96Nb4 metallic glass alloy of 808 K. However, the wettability of this alloy with the Pd42.5Ni 7.5P20Cu30 alloy was revealed to be poor. Therefore, sintering pressure was applied to the compacts to promote a viscous flow deformation of solid particles and also to enhance the intergranular permeation of the liquid phase. A specially designed micro-hot press was devised for the pressure-sintering experiment. A pseudo-wettability was observed during pressure-sintering, and the liquid phase was found to fill completely the intergranular space of the powder compact. The relative density of 64-95%, as well as the sintering structure, could be controlled by the punch displacement to squeeze out a part of the liquid phase from the compact. The compressive fracture strength of the obtained metallic glass composite was found to be as high as 2051 MPa, and the fracture was observed to be intragranular type, suggesting a good bonding in the particle-binding phase interlace.

Original languageEnglish
Pages (from-to)2056-2062
Number of pages7
JournalMaterials Transactions
Volume51
Issue number11
DOIs
Publication statusPublished - Nov 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Synthesis of Fe based metallic glass-Pd based metallic glass composite by slightly pressured liquid phase sintering'. Together they form a unique fingerprint.

Cite this