Synthesis of flowerlike ceria–zirconia solid solution for promoting dry reforming of methane

P. H. Tu, M. Sakamoto, K. Sasaki, Y. Shiratori

Research output: Contribution to journalArticlepeer-review

Abstract

Using a newly developed two-step hydrothermal process, flowerlike Ce0.5Zr0.5O2 with an oxygen storage capacity (OSC) of 536 μmol O2 g−1, almost twice as high as that of pure flowerlike CeO2 (284 μmol O2 g−1), can be synthesized. The synthesized ceria-based oxide supports loaded with Ni are dispersed in a ceramic fiber network to form paper-structured catalysts (PSCs). Among the prepared PSCs, the PSC with the flowerlike Ce0.5Zr0.5O2 exhibits the highest catalytic performance for dry reforming of methane (DRM) at 750 °C with the initial methane conversion of 88.4%, degradation rate of 0.1% h−1 and amount of deposited carbon of 0.04 g per gram catalyst, whereas for the Ce0.5Zr0.5O2 synthesized by the one-step hydrothermal process, the values are 83.7%, 0.62% h−1 and 0.07 g per gram catalyst, respectively. This is attributed to the Ni anti-sintering on the petals of the flowerlike structure and the coking tolerance resulting from the high OSC.

Original languageEnglish
JournalInternational Journal of Hydrogen Energy
DOIs
Publication statusAccepted/In press - 2021

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Synthesis of flowerlike ceria–zirconia solid solution for promoting dry reforming of methane'. Together they form a unique fingerprint.

Cite this