Synthesis of heterometal cluster complexes by the reaction of cobaltadichalcogenolato complexes with groups 6 and 8 metal carbonyls

Masaki Murata, Satoru Habe, Shingo Araki, Kosuke Namiki, Teppei Yamada, Norikiyo Nakagawa, Takuya Nankawa, Masayuki Nihei, Jun Mizutani, Masato Kurihara, Hiroshi Nishihara

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Metalladichalcogenolate cluster complexes [{CpCo(S2C 6H4)}2Mo(CO)2] (Cp = η5-C5H5) (3), [{CpCo(S2C 6H4)}2W(CO)2] (4), [CpCo(S 2C6H4)Fe(CO)3] (5), [CpCo(S 2C6H4)Ru(CO)2(PtBu 3)] (6), [{CpCo(Se2C6H4)} 2Mo(CO)2] (7), and [{CpCo(Se2C 6H4)}(Se2C6H4)W(CO) 2] (8) were synthesized by the reaction of [CpCo(E2C 6H4)] (E = S, Se) with [M(CO)3(py)3] (M = Mo, W), [Fe(CO)5], or [Ru(CO)3(PtBu 3)2], and their crystal structures and physical properties were investigated. In the series of trinuclear group 6 metal-Co complexes, 3, 4, and 7 have similar structures, but the W-Se complex, 8, eliminates one cobalt atom and one cyclopentadienyl group from the sulfur analogue, 4, and does not satisfy the 18-electron rule. 1H NMR observation suggested that the CoW dinuclear complex 8 was generated via a trinuclear Co2W complex, with a structure comparable to 7. The trinuclear cluster complexes, 3, 4, and 7, undergo quasi-reversible two-step one-electron reduction, indicating the formation of mixed-valence complexes CoIIIM0Co II (M = Mo, W). The thermodynamic stability of the mixed-valence state increases in the order 4 < 3 < 7. In the dinuclear group 8 metal-Co complexes, 5 and 6, the CpCo(S2C6H4) moiety and the metal carbonyl moiety act as a Lewis acid character and a base character, respectively, as determined by their spectrochemical and redox properties. Complex 5 undergoes reversible two-step one-electron reduction, and an electron paramagnetic resonance (EPR) study indicates the stepwise reduction process from CoIIIFe0 to form CoIIIFe-I and CoIIFe-I.

Original languageEnglish
Pages (from-to)1108-1116
Number of pages9
JournalInorganic chemistry
Volume45
Issue number3
DOIs
Publication statusPublished - Feb 6 2006
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this