Synthesis of In2O3 nanocubes, nanocube clusters, and nanocubes-embedded Au nanoparticles for conductometric CO sensors

Yongjiao Sun, Zhenting Zhao, Rui Zhou, Pengwei Li, Wendong Zhang, Koichi Suematsu, Jie Hu

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Cubic indium oxide (In2O3) of different sizes, In2O3 nanocube clusters, and In2O3 nanocube clusters embedded Au nanoparticles were obtained using solvothermal method. Compared with the large size or monodispersed In2O3 nanocubes, In2O3 nanocube clusters shows a higher response to carbon monoxide (CO), due to increased surface area and pore structures. Moreover, In2O3 nanocube clusters with an Au nanoparticle core (Au@In2O3) leads to a further increase of response to CO. Our results also show that 1 at% Au@In2O3 system presents the best sensing properties with response of 42.1–100 ppm CO, response/recovery speed of 2/2 s and ultra-low limit detection. The CO concentration dependence of the sensor response implies that ∼0.5 ppb and ∼28 ppb could be detected with a response value of 1.4 under 20 % and 93 % relative humidity, respectively. This increase in sensing response is due to the fact that Au nanoparticles can enhance the receptor function of the semiconductor gas sensor. Remarkably, Au@In2O3 system unifies three key factors of a semiconductor gas sensor, i.e., high specific surface area, high porosity, and noble metal loading.

Original languageEnglish
Article number130433
JournalSensors and Actuators, B: Chemical
Volume345
DOIs
Publication statusPublished - Oct 15 2021

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of In<sub>2</sub>O<sub>3</sub> nanocubes, nanocube clusters, and nanocubes-embedded Au nanoparticles for conductometric CO sensors'. Together they form a unique fingerprint.

Cite this