Abstract
Novel composites of silicon monoxide, pyrolytic carbon and carbon nanofiber (SiO/PyC/CNF) were hybridized with natural graphite (NG) as a means of improving the anodic performance of Li-ion batteries. Samples were made with hybridization levels of 10-30wt% of NG exhibited excellent cyclability with a discharge capacity of 389-522mAhg 1 in a Li-ion battery system. SiO/PyC/CNF composite hybrids showed better cyclability than other carbon composites containing SiO/PyC and SiO/CNF. These hybridization effects were attributed to the lower contact resistance of SiO/PyC/CNF in the electrode. The internal spaces created throughout the SiO/PyC/CNF composite and their effect on material dispersion in the hybridized electrodes may have prevented electrode damage by relieving tensions induced by the expansion of SiO particles in the electrode over the course of repeated charge and discharge processes.
Original language | English |
---|---|
Article number | 355601 |
Journal | Nanotechnology |
Volume | 23 |
Issue number | 35 |
DOIs | |
Publication status | Published - Sept 7 2012 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering