Systematic study on the role of various higher-order processes in the breakup of weakly-bound projectiles

Jagjit Singh, Takuma Matsumoto, Kazuyuki Ogata

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The virtual photon theory (VPT), which is based on first-order Coulomb dissociation restricted to the electric dipole (E1), has been successfully used to explain the breakup data for several cases. Our aim is to study the role of various higher-order processes that are ignored in the VPT, such as the nuclear breakup, interference between nuclear and Coulomb amplitudes, and multistep breakup processes mainly due to strong continuum-continuum couplings in the breakup of twobody projectiles on a heavy target at both intermediate and higher incident energies. For the purpose of numerical calculations, we employed an eikonal version of a three-body continuumdiscretized coupled-channels (CDCC) reaction model. Our results for the breakup of 11Be and 17F on a 208Pb target at 100, 250, and 520 MeV A-1 show the importance of the nuclear breakup contribution and its significant role in the multistep processes. The multistep effect on Coulomb breakup for a core-neutron projectile was found to be negligible, whereas it was important for a core-proton projectile. A Coulomb-nuclear interference (CNI) effect was also found to be nonnegligible. Quantitatively, the multistep effects due to the nuclear breakup were found to depend on the incident energy through the energy dependence of the core-target and nucleon-target nuclear potentials. The nuclear breakup component, the CNI effect, and the multistep breakup processes are all found to be non-negligible; hence, the assumptions adopted in the VPT for the accurate description of breakup cross-sections are not valid.

Original languageEnglish
Article number073D01
JournalProgress of Theoretical and Experimental Physics
Volume2021
Issue number7
DOIs
Publication statusPublished - Jul 1 2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Systematic study on the role of various higher-order processes in the breakup of weakly-bound projectiles'. Together they form a unique fingerprint.

Cite this