Bidyut B. Saha, Shigeru Koyama, Ken Kuwahara

    Research output: Contribution to journalArticlepeer-review


    This study aims at improving the performance of thermally activated silica gel-water adsorption refrigeration cycle by introducing multi-bed scheme. In this paper, a 3-bed non-regenerative silica gel-water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. The 3-bed chiller will be able to work as high efficient single-stage adsorption chiller where driving source temperature is between 60 and 95℃ along with a coolant at 30℃. The 3-bed cycle comprises with three adsorber/desorber heat exchangers, one evaporator and one condenser as can be seen from Fig. A-1. Waste heat or renewable energy sources will power the high temperature desorber. If two beds are in desorption mode, the hot water outlet from the lead desorber will drive the lag desorber before being purged to ambient. This facilitates the maximum utilization of the waste stream. On the contrary, if two adsorber or desorber beds are in adsorption mode, the cooling water outlet from the lead adsorber will cool down the lag adsorber. In this circumstance, two adsorber beds will be connected with the evaporator and will enhance evaporation. The present design allows refrigerant vapor recovery between the high temperature desorber (s) and low temperature adsorber (s) by openning valves 6,7 and 8. This will result in pressure swing in the process and evaporation enhancement. A cycle simulation computer program is developed to analyze the influence of operating temperatures (hot and cooling water temperatures) on cooling capacity and coefficient of performance (COP) of the innovative 3-bed cycle. The cycle simulation calculation indicates that the COP value of the 3-bed chiller is 0.38 with a driving source temperature at 80℃ in combination with coolant inlet and chilled water inlet temperatures at 30℃ and 14℃, respectively. The delivered chilled water temperature is about 6℃ with this operation condition.[figure]
    Original languageEnglish
    Pages (from-to)63
    JournalProceedings of the ... ASME/JSME Thermal Engineering Joint Conference
    Issue number6
    Publication statusPublished - 2003


    Dive into the research topics of 'TED-AJ03-559 DEVELOPMENT OF MULTI-BED ADSORPTION CHILLER FOR LOW-TEMPERATURE WASTE HEAT RECOVERY :'. Together they form a unique fingerprint.

    Cite this