TED-AJ03-559 DEVELOPMENT OF MULTI-BED ADSORPTION CHILLER FOR LOW-TEMPERATURE WASTE HEAT RECOVERY :

Bidyut B. Saha, Shigeru Koyama, Ken Kuwahara

Research output: Contribution to journalArticle

Abstract

This study aims at improving the performance of thermally activated silica gel-water adsorption refrigeration cycle by introducing multi-bed scheme. In this paper, a 3-bed non-regenerative silica gel-water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. The 3-bed chiller will be able to work as high efficient single-stage adsorption chiller where driving source temperature is between 60 and 95℃ along with a coolant at 30℃. The 3-bed cycle comprises with three adsorber/desorber heat exchangers, one evaporator and one condenser as can be seen from Fig. A-1. Waste heat or renewable energy sources will power the high temperature desorber. If two beds are in desorption mode, the hot water outlet from the lead desorber will drive the lag desorber before being purged to ambient. This facilitates the maximum utilization of the waste stream. On the contrary, if two adsorber or desorber beds are in adsorption mode, the cooling water outlet from the lead adsorber will cool down the lag adsorber. In this circumstance, two adsorber beds will be connected with the evaporator and will enhance evaporation. The present design allows refrigerant vapor recovery between the high temperature desorber (s) and low temperature adsorber (s) by openning valves 6,7 and 8. This will result in pressure swing in the process and evaporation enhancement. A cycle simulation computer program is developed to analyze the influence of operating temperatures (hot and cooling water temperatures) on cooling capacity and coefficient of performance (COP) of the innovative 3-bed cycle. The cycle simulation calculation indicates that the COP value of the 3-bed chiller is 0.38 with a driving source temperature at 80℃ in combination with coolant inlet and chilled water inlet temperatures at 30℃ and 14℃, respectively. The delivered chilled water temperature is about 6℃ with this operation condition.[figure]
Original languageEnglish
Pages (from-to)63
JournalProceedings of the ... ASME/JSME Thermal Engineering Joint Conference
Volume2003
Issue number6
Publication statusPublished - 2003

Fingerprint

Waste heat utilization
Adsorption
Temperature
Silica gel
Water
Cooling water
Evaporators
Coolants
Evaporation
Lead
Condensers (liquefiers)
Waste heat
Refrigerants
Refrigeration
Heat exchangers
Computer program listings
Desorption
Vapors
Cooling
Recovery

Cite this

TED-AJ03-559 DEVELOPMENT OF MULTI-BED ADSORPTION CHILLER FOR LOW-TEMPERATURE WASTE HEAT RECOVERY : / Saha, Bidyut B.; Koyama, Shigeru; Kuwahara, Ken.

In: Proceedings of the ... ASME/JSME Thermal Engineering Joint Conference, Vol. 2003, No. 6, 2003, p. 63.

Research output: Contribution to journalArticle

@article{62eb0fd3d1dd4950a6b596427e72759e,
title = "TED-AJ03-559 DEVELOPMENT OF MULTI-BED ADSORPTION CHILLER FOR LOW-TEMPERATURE WASTE HEAT RECOVERY :",
abstract = "This study aims at improving the performance of thermally activated silica gel-water adsorption refrigeration cycle by introducing multi-bed scheme. In this paper, a 3-bed non-regenerative silica gel-water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. The 3-bed chiller will be able to work as high efficient single-stage adsorption chiller where driving source temperature is between 60 and 95℃ along with a coolant at 30℃. The 3-bed cycle comprises with three adsorber/desorber heat exchangers, one evaporator and one condenser as can be seen from Fig. A-1. Waste heat or renewable energy sources will power the high temperature desorber. If two beds are in desorption mode, the hot water outlet from the lead desorber will drive the lag desorber before being purged to ambient. This facilitates the maximum utilization of the waste stream. On the contrary, if two adsorber or desorber beds are in adsorption mode, the cooling water outlet from the lead adsorber will cool down the lag adsorber. In this circumstance, two adsorber beds will be connected with the evaporator and will enhance evaporation. The present design allows refrigerant vapor recovery between the high temperature desorber (s) and low temperature adsorber (s) by openning valves 6,7 and 8. This will result in pressure swing in the process and evaporation enhancement. A cycle simulation computer program is developed to analyze the influence of operating temperatures (hot and cooling water temperatures) on cooling capacity and coefficient of performance (COP) of the innovative 3-bed cycle. The cycle simulation calculation indicates that the COP value of the 3-bed chiller is 0.38 with a driving source temperature at 80℃ in combination with coolant inlet and chilled water inlet temperatures at 30℃ and 14℃, respectively. The delivered chilled water temperature is about 6℃ with this operation condition.[figure]",
author = "Saha, {Bidyut B.} and Shigeru Koyama and Ken Kuwahara",
year = "2003",
language = "English",
volume = "2003",
pages = "63",
journal = "Proceedings of the ... ASME/JSME Thermal Engineering Joint Conference",
publisher = "日本機械学会関東支部",
number = "6",

}

TY - JOUR

T1 - TED-AJ03-559 DEVELOPMENT OF MULTI-BED ADSORPTION CHILLER FOR LOW-TEMPERATURE WASTE HEAT RECOVERY :

AU - Saha, Bidyut B.

AU - Koyama, Shigeru

AU - Kuwahara, Ken

PY - 2003

Y1 - 2003

N2 - This study aims at improving the performance of thermally activated silica gel-water adsorption refrigeration cycle by introducing multi-bed scheme. In this paper, a 3-bed non-regenerative silica gel-water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. The 3-bed chiller will be able to work as high efficient single-stage adsorption chiller where driving source temperature is between 60 and 95℃ along with a coolant at 30℃. The 3-bed cycle comprises with three adsorber/desorber heat exchangers, one evaporator and one condenser as can be seen from Fig. A-1. Waste heat or renewable energy sources will power the high temperature desorber. If two beds are in desorption mode, the hot water outlet from the lead desorber will drive the lag desorber before being purged to ambient. This facilitates the maximum utilization of the waste stream. On the contrary, if two adsorber or desorber beds are in adsorption mode, the cooling water outlet from the lead adsorber will cool down the lag adsorber. In this circumstance, two adsorber beds will be connected with the evaporator and will enhance evaporation. The present design allows refrigerant vapor recovery between the high temperature desorber (s) and low temperature adsorber (s) by openning valves 6,7 and 8. This will result in pressure swing in the process and evaporation enhancement. A cycle simulation computer program is developed to analyze the influence of operating temperatures (hot and cooling water temperatures) on cooling capacity and coefficient of performance (COP) of the innovative 3-bed cycle. The cycle simulation calculation indicates that the COP value of the 3-bed chiller is 0.38 with a driving source temperature at 80℃ in combination with coolant inlet and chilled water inlet temperatures at 30℃ and 14℃, respectively. The delivered chilled water temperature is about 6℃ with this operation condition.[figure]

AB - This study aims at improving the performance of thermally activated silica gel-water adsorption refrigeration cycle by introducing multi-bed scheme. In this paper, a 3-bed non-regenerative silica gel-water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. The 3-bed chiller will be able to work as high efficient single-stage adsorption chiller where driving source temperature is between 60 and 95℃ along with a coolant at 30℃. The 3-bed cycle comprises with three adsorber/desorber heat exchangers, one evaporator and one condenser as can be seen from Fig. A-1. Waste heat or renewable energy sources will power the high temperature desorber. If two beds are in desorption mode, the hot water outlet from the lead desorber will drive the lag desorber before being purged to ambient. This facilitates the maximum utilization of the waste stream. On the contrary, if two adsorber or desorber beds are in adsorption mode, the cooling water outlet from the lead adsorber will cool down the lag adsorber. In this circumstance, two adsorber beds will be connected with the evaporator and will enhance evaporation. The present design allows refrigerant vapor recovery between the high temperature desorber (s) and low temperature adsorber (s) by openning valves 6,7 and 8. This will result in pressure swing in the process and evaporation enhancement. A cycle simulation computer program is developed to analyze the influence of operating temperatures (hot and cooling water temperatures) on cooling capacity and coefficient of performance (COP) of the innovative 3-bed cycle. The cycle simulation calculation indicates that the COP value of the 3-bed chiller is 0.38 with a driving source temperature at 80℃ in combination with coolant inlet and chilled water inlet temperatures at 30℃ and 14℃, respectively. The delivered chilled water temperature is about 6℃ with this operation condition.[figure]

M3 - Article

VL - 2003

SP - 63

JO - Proceedings of the ... ASME/JSME Thermal Engineering Joint Conference

JF - Proceedings of the ... ASME/JSME Thermal Engineering Joint Conference

IS - 6

ER -