Temperature compensation in circadian clock models

Gen Kurosawa, Yoh Iwasa

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Circadian clock of organisms has a free-running period that does not change much with ambient temperature. This property "temperature compensation" is studied when the rate of all reaction steps increase with temperature in the biochemical network generating the rhythm. The period becomes shorter when all the rate parameters are enhanced by the same factor. However, the period becomes longer as degradation rate of proteins and/or transcription rate of the clock gene increase (their elasticity is positive). This holds for a wide range of models, including N-variable model, and PER-TIM double oscillator model, provided that (1) branch reactions (e.g. degradation of proteins or mRNAs) are strongly saturated, and that (2) the cooperativity of transcription inhibition by nuclear proteins is not very large. A strong temperature sensitivity of degradation of PER proteins and/or temperature-sensitive alternative splicing of per gene, known for Drosophila, can be mechanisms for the temperature compensation of circadian clock.

Original languageEnglish
Pages (from-to)453-468
Number of pages16
JournalJournal of Theoretical Biology
Volume233
Issue number4
DOIs
Publication statusPublished - Apr 21 2005

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Temperature compensation in circadian clock models'. Together they form a unique fingerprint.

  • Cite this