Temperature dependence of spherical electron transfer in a nanosized [Fe14] complex

Wei Huang, Shuqi Wu, Xiangwei Gu, Yao Li, Atsushi Okazawa, Norimichi Kojima, Shinya Hayami, Michael L. Baker, Peter Bencok, Mariko Noguchi, Yuji Miyazaki, Motohiro Nakano, Takumi Nakanishi, Shinji Kanegawa, Yuji Inagaki, Tatsuya Kawae, Gui Lin Zhuang, Yoshihito Shiota, Kazunari Yoshizawa, Dayu WuOsamu Sato

Research output: Contribution to journalArticle

Abstract

The study of transition metal clusters exhibiting fast electron hopping or delocalization remains challenging, because intermetallic communications mediated through bridging ligands are normally weak. Herein, we report the synthesis of a nanosized complex, [Fe(Tp)(CN)3]8[Fe(H2O)(DMSO)]6 (abbreviated as [Fe14], Tp, hydrotris(pyrazolyl)borate; DMSO, dimethyl sulfoxide), which has a fluctuating valence due to two mobile d-electrons in its atomic layer shell. The rate of electron transfer of [Fe14] complex demonstrates the Arrhenius-type temperature dependence in the nanosized spheric surface, wherein high-spin centers are ferromagnetically coupled, producing an S = 14 ground state. The electron-hopping rate at room temperature is faster than the time scale of Mössbauer measurements (<~10−8 s). Partial reduction of N-terminal high spin FeIII sites and electron mediation ability of CN ligands lead to the observation of both an extensive electron transfer and magnetic coupling properties in a precisely atomic layered shell structure of a nanosized [Fe14] complex.

Original languageEnglish
Article number5510
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 1 2019

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this