TGFβ2 acts as an 'activator' molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture

Takashi Miura, Kohei Shiota

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

It was previously speculated that TGFβ acts as an 'activator'-molecule in chondrogenic pattern formation in the limb micromass culture system, but its precise role and relationship with the cell sorting phenomenon have not been properly studied. In the present study, we examined whether the TGFβ2 molecule satisfies the necessary conditions for an 'activator'-molecule in the reaction-diffusion model. Firstly, we showed that TGFβ2 became localized at chondrogenic sites during the establishment of a chondrogenic pattern, and exogenous TGFβ2 promoted chondrogenesis when added in the culture medium. Secondly, TGFβ2 protein was shown to promote the production of its own mRNA after 3 hr, indicating that a positive feedback mechanism exists which may be responsible for the emergence of the chondrogenic pattern. We then found that when locally applied with beads, TGFβ2 suppressed chondrogenesis around the beads, indicating it induces the lateral inhibitory mechanism, which is a key element for the formation of the periodic pattern. We also examined the possible effects of TGFβ2 on the cell sorting phenomenon and found that TGFβ2 exerts differential chemotactic activity on proximal and distal mesenchyme cells of the limb bud, and at very early phases of differentiation TGFβ2 promotes the expression of N-cadherin protein which is known to be involved in pattern formation in this culture system. These findings suggest that TGFβ2 acts as an 'activator'-like molecule in chondrogenic pattern formation in vitro, and is possibly responsible for the cell sorting phenomenon. (C) 2000 Wiley- Liss, Inc.

Original languageEnglish
Pages (from-to)241-249
Number of pages9
JournalDevelopmental Dynamics
Volume217
Issue number3
DOIs
Publication statusPublished - Jan 1 2000
Externally publishedYes

Fingerprint

Extremities
Chondrogenesis
Limb Buds
Mesoderm
Cadherins
Culture Media
Proteins
Messenger RNA

All Science Journal Classification (ASJC) codes

  • Cell Biology
  • Developmental Biology

Cite this

@article{4d41419045c94186840d58700e694792,
title = "TGFβ2 acts as an 'activator' molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture",
abstract = "It was previously speculated that TGFβ acts as an 'activator'-molecule in chondrogenic pattern formation in the limb micromass culture system, but its precise role and relationship with the cell sorting phenomenon have not been properly studied. In the present study, we examined whether the TGFβ2 molecule satisfies the necessary conditions for an 'activator'-molecule in the reaction-diffusion model. Firstly, we showed that TGFβ2 became localized at chondrogenic sites during the establishment of a chondrogenic pattern, and exogenous TGFβ2 promoted chondrogenesis when added in the culture medium. Secondly, TGFβ2 protein was shown to promote the production of its own mRNA after 3 hr, indicating that a positive feedback mechanism exists which may be responsible for the emergence of the chondrogenic pattern. We then found that when locally applied with beads, TGFβ2 suppressed chondrogenesis around the beads, indicating it induces the lateral inhibitory mechanism, which is a key element for the formation of the periodic pattern. We also examined the possible effects of TGFβ2 on the cell sorting phenomenon and found that TGFβ2 exerts differential chemotactic activity on proximal and distal mesenchyme cells of the limb bud, and at very early phases of differentiation TGFβ2 promotes the expression of N-cadherin protein which is known to be involved in pattern formation in this culture system. These findings suggest that TGFβ2 acts as an 'activator'-like molecule in chondrogenic pattern formation in vitro, and is possibly responsible for the cell sorting phenomenon. (C) 2000 Wiley- Liss, Inc.",
author = "Takashi Miura and Kohei Shiota",
year = "2000",
month = "1",
day = "1",
doi = "10.1002/(SICI)1097-0177(200003)217:3<241::AID-DVDY2>3.0.CO;2-K",
language = "English",
volume = "217",
pages = "241--249",
journal = "Developmental Dynamics",
issn = "1058-8388",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - TGFβ2 acts as an 'activator' molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture

AU - Miura, Takashi

AU - Shiota, Kohei

PY - 2000/1/1

Y1 - 2000/1/1

N2 - It was previously speculated that TGFβ acts as an 'activator'-molecule in chondrogenic pattern formation in the limb micromass culture system, but its precise role and relationship with the cell sorting phenomenon have not been properly studied. In the present study, we examined whether the TGFβ2 molecule satisfies the necessary conditions for an 'activator'-molecule in the reaction-diffusion model. Firstly, we showed that TGFβ2 became localized at chondrogenic sites during the establishment of a chondrogenic pattern, and exogenous TGFβ2 promoted chondrogenesis when added in the culture medium. Secondly, TGFβ2 protein was shown to promote the production of its own mRNA after 3 hr, indicating that a positive feedback mechanism exists which may be responsible for the emergence of the chondrogenic pattern. We then found that when locally applied with beads, TGFβ2 suppressed chondrogenesis around the beads, indicating it induces the lateral inhibitory mechanism, which is a key element for the formation of the periodic pattern. We also examined the possible effects of TGFβ2 on the cell sorting phenomenon and found that TGFβ2 exerts differential chemotactic activity on proximal and distal mesenchyme cells of the limb bud, and at very early phases of differentiation TGFβ2 promotes the expression of N-cadherin protein which is known to be involved in pattern formation in this culture system. These findings suggest that TGFβ2 acts as an 'activator'-like molecule in chondrogenic pattern formation in vitro, and is possibly responsible for the cell sorting phenomenon. (C) 2000 Wiley- Liss, Inc.

AB - It was previously speculated that TGFβ acts as an 'activator'-molecule in chondrogenic pattern formation in the limb micromass culture system, but its precise role and relationship with the cell sorting phenomenon have not been properly studied. In the present study, we examined whether the TGFβ2 molecule satisfies the necessary conditions for an 'activator'-molecule in the reaction-diffusion model. Firstly, we showed that TGFβ2 became localized at chondrogenic sites during the establishment of a chondrogenic pattern, and exogenous TGFβ2 promoted chondrogenesis when added in the culture medium. Secondly, TGFβ2 protein was shown to promote the production of its own mRNA after 3 hr, indicating that a positive feedback mechanism exists which may be responsible for the emergence of the chondrogenic pattern. We then found that when locally applied with beads, TGFβ2 suppressed chondrogenesis around the beads, indicating it induces the lateral inhibitory mechanism, which is a key element for the formation of the periodic pattern. We also examined the possible effects of TGFβ2 on the cell sorting phenomenon and found that TGFβ2 exerts differential chemotactic activity on proximal and distal mesenchyme cells of the limb bud, and at very early phases of differentiation TGFβ2 promotes the expression of N-cadherin protein which is known to be involved in pattern formation in this culture system. These findings suggest that TGFβ2 acts as an 'activator'-like molecule in chondrogenic pattern formation in vitro, and is possibly responsible for the cell sorting phenomenon. (C) 2000 Wiley- Liss, Inc.

UR - http://www.scopus.com/inward/record.url?scp=0033624927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033624927&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1097-0177(200003)217:3<241::AID-DVDY2>3.0.CO;2-K

DO - 10.1002/(SICI)1097-0177(200003)217:3<241::AID-DVDY2>3.0.CO;2-K

M3 - Article

C2 - 10741418

AN - SCOPUS:0033624927

VL - 217

SP - 241

EP - 249

JO - Developmental Dynamics

JF - Developmental Dynamics

SN - 1058-8388

IS - 3

ER -