The 1,2-diaminocyclohexane carrier ligand in oxaliplatin induces p53-dependent transcriptional repression of factors involved in thymidylate biosynthesis

Shinichi Kiyonari, Makoto Iimori, Kazuaki Matsuoka, Sugiko Watanabe, Tomomi Morikawa-Ichinose, Daisuke Miura, Shinichiro Niimi, Hiroshi Saeki, Eriko Tokunaga, Eiji Oki, Masaru Morita, Kenji Kadomatsu, Yoshihiko Maehara, Hiroyuki Kitao

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Platinum-based chemotherapeutic drugs are widely used as components of combination chemotherapy in the treatment of cancer. One such drug, oxaliplatin, exerts a synergistic effect against advanced colorectal cancer in combination with 5-fluorouracil (5-FU) and leucovorin. In the p53-proficient colorectal cancer cell line HCT116, oxaliplatin represses the expression of deoxyuridine triphosphatase (dUTPase), a ubiquitous pyrophosphatase that catalyzes the hydrolysis of dUTP to dUMP and inhibits dUTP-mediated cytotoxicity. However, the underlying mechanism of this activity has not been completely elucidated, and it remains unclear whether factors other than downregulation of dUTPase contribute to the synergistic effect of 5-FU and oxaliplatin. In this study, we found that oxaliplatin and dachplatin, platinum-based drugs containing the 1,2-diaminocyclohexane (DACH) carrier ligand, repressed the expression of nuclear isoform of dUTPase (DUT-N), whereas cisplatin and carboplatin did not. Oxaliplatin induced early p53 accumulation, upregulation of primary miR-34a transcript expression, and subsequent downregulation of E2F3 and E2F1. Nutlin-3a, which activates p53 nongenotoxically, had similar effects. Introduction of miR-34a mimic also repressed E2F1 and DUT-N expression, indicating that this miRNA plays a causative role. In addition to DUT-N, oxaliplatin repressed, in a p53-dependent manner, the expression of genes encoding enzymes involved in thymidylate biosynthesis. Consequently, oxaliplatin significantly decreased the level of dTTP in the dNTP pool in a p53-dependent manner. These data indicate that the DACH carrier ligand in oxaliplatin triggers signaling via the p53-miR-34a-E2F axis, leading to transcriptional regulation that ultimately results in accumulation of dUTP and reduced dTTP biosynthesis, potentially enhancing 5-FU cytotoxicity.

Original languageEnglish
Pages (from-to)2332-2342
Number of pages11
JournalMolecular Cancer Therapeutics
Volume14
Issue number10
DOIs
Publication statusPublished - Oct 1 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this