The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats

Yukiko Hattori, Tomoki Takeda, Arisa Nakamura, Kyoko Nishida, Yuko Shioji, Haruki Fukumitsu, Hideyuki Yamada, Yuji Ishii

Research output: Contribution to journalArticle

Abstract

Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood.

Original languageEnglish
Pages (from-to)213-221
Number of pages9
JournalBiochemical Pharmacology
Volume154
DOIs
Publication statusPublished - Aug 1 2018

Fingerprint

Multifetal Pregnancy Reduction
Aryl Hydrocarbon Receptors
Dioxins
Rats
Defects
Gonadotropins
Pituitary Gonadotropins
Poisons
Sex Characteristics
Sexual Behavior
Fetus
Saccharin
Litter Size
Polychlorinated Dibenzodioxins
1,4-dioxin
Sex Ratio
Wistar Rats
Chemical activation
Body Weight

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Pharmacology

Cite this

The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats. / Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji.

In: Biochemical Pharmacology, Vol. 154, 01.08.2018, p. 213-221.

Research output: Contribution to journalArticle

Hattori, Yukiko ; Takeda, Tomoki ; Nakamura, Arisa ; Nishida, Kyoko ; Shioji, Yuko ; Fukumitsu, Haruki ; Yamada, Hideyuki ; Ishii, Yuji. / The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats. In: Biochemical Pharmacology. 2018 ; Vol. 154. pp. 213-221.
@article{ef61491143b341f9a4eeec86c44c27cc,
title = "The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats",
abstract = "Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood.",
author = "Yukiko Hattori and Tomoki Takeda and Arisa Nakamura and Kyoko Nishida and Yuko Shioji and Haruki Fukumitsu and Hideyuki Yamada and Yuji Ishii",
year = "2018",
month = "8",
day = "1",
doi = "10.1016/j.bcp.2018.05.008",
language = "English",
volume = "154",
pages = "213--221",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats

AU - Hattori, Yukiko

AU - Takeda, Tomoki

AU - Nakamura, Arisa

AU - Nishida, Kyoko

AU - Shioji, Yuko

AU - Fukumitsu, Haruki

AU - Yamada, Hideyuki

AU - Ishii, Yuji

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood.

AB - Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood.

UR - http://www.scopus.com/inward/record.url?scp=85047179984&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047179984&partnerID=8YFLogxK

U2 - 10.1016/j.bcp.2018.05.008

DO - 10.1016/j.bcp.2018.05.008

M3 - Article

C2 - 29753751

AN - SCOPUS:85047179984

VL - 154

SP - 213

EP - 221

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

ER -