The Astro-H high resolution soft X-ray spectrometer

Richard L. Kelley, Hiroki Akamatsu, Phillipp Azzarell, Tom Bialas, Kevin R. Boyce, Gregory V. Brown, Edgar Canavan, Meng P. Chiao, Elisa Costantini, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Ryuichi Fujimoto, Daniel Haas, Jan Willem Den Herder, Akio Hoshino, Kumi Ishikawa, Yoshitaka Ishisaki, Naoko Iyomoto, Caroline A. KilbourneMark Kimball, Shunji Kitamoto, Saori Konami, Shu Koyama, Maurice A. Leutenegger, Dan McCammon, Joseph Miko, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Harvey Moseley, Hiroshi Murakami, Masahide Murakami, Hirofumi Noda, Mina Ogawa, Takaya Ohashi, Atsushi Okamoto, Naomi Ota, Stéphane Paltani, F. Scott Porter, Kazuhiro Sakai, Kosuke Sato, Yohichi Sato, Makoto Sawada, Hiromi Seta, Keisuke Shinozaki, Peter J. Shirron, Gary A. Sneiderman, Hiroyuki Sugita, Andrew E. Szymkowiak, Yoh Takei, Toru Tamagawa, Makoto Tashiro, Yukikatsu Terada, Masahiro Tsujimoto, Cor P. De Vries, Shinya Yamada, Noriko Y. Yamasaki, Yoichi Yatsu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

76 Citations (Scopus)

Abstract

We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

Original languageEnglish
Title of host publicationSpace Telescopes and Instrumentation 2016
Subtitle of host publicationUltraviolet to Gamma Ray
EditorsMarshall Bautz, Tadayuki Takahashi, Jan-Willem A. den Herder
PublisherSPIE
ISBN (Electronic)9781510601895
DOIs
Publication statusPublished - 2016
EventSpace Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray - Edinburgh, United Kingdom
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9905
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherSpace Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray
Country/TerritoryUnited Kingdom
CityEdinburgh
Period6/26/167/1/16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Astro-H high resolution soft X-ray spectrometer'. Together they form a unique fingerprint.

Cite this