Abstract
The atomic and electronic structures of NiO(001)/Au(001) interfaces were analyzed by high-resolution medium energy ion scattering (MEIS) and photoelectron spectroscopy using synchrotron-radiation-light. The MEIS analysis clearly showed that O atoms were located above Au atoms at the interface and the inter-planar distance of NiO(001)/Au(001) was derived to be 2.30 ± 0.05 Å, which was consistent with the calculations based on the density functional theory (DFT). We measured the valence band spectra and found metallic features for the NiO thickness up to 3 monolayer (ML). Relevant to the metallic features, electron energy loss analysis revealed that the bandgap for NiO(001)/Au(001) reduced with decreasing the NiO thickness from 10 down to 5 ML. We also observed Au 4f lines consisting of surface, bulk, and interface components and found a significant electronic charge transfer from Au(001) to NiO(001). The present DFT calculations demonstrated the presence of an image charge beneath Ni atoms at the interface just like alkali-halide/metal interface, which may be a key issue to explain the core level shift and band structure.
Original language | English |
---|---|
Article number | 144705 |
Journal | Journal of Chemical Physics |
Volume | 139 |
Issue number | 14 |
DOIs | |
Publication status | Published - Oct 14 2013 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry