The effect of PEG grafted on gold nanorods and their injection dose on biodistribution in tumor-bearing mice

Yasuyuki Akiyama, Takeshi Mori, Yoshiki Katayama, Takuro Niidome

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Gold nanorods have strong surface plasmon band in the near-infrared region, at which light penetrates deeply into tissues, and convert the absorbed light energy into heat. Therefore, gold nanorods are expected to act as an effective contrast agent for in vivo bioimaging and as a photosensitizer for photothermal therapy. In order to efficiently achieve these applications without side effects, gold nanorods should be selectively accumulated in the target organ. In this study, we optimized the length of the poly (ethylene glycol) (PEG) chain to stabilize the PEG-modified gold nanorods in blood circulation, and investigated the effects of PEG grafting level and injection dose on the biodistribution and enhanced permeability and retention (EPR) effect after intravenous injection into mice. PEG5,000-, PEG 10,000- and PEG20,000- modified gold nanorods showed higher blood circulation stability compared with PEG 2,000-modifed gold nanorods. Higher PEG grafting levels were advantageous for the reticuloendothelial system (RES) avoidance and suppression of aggregation of the gold nanorods in the blood circulation. Modification with a PEG5,000: gold molar ratio of 1.5 was sufficient to show both prolonged circulation and the EPR effect. When the injection dose was increased above 39.0 μg of gold, the RES uptake in the liver was saturated and surplus gold nanorods were distributed to other tissues, especially the spleen and tumor. This information is important key to provide the successful application of gold nanorods in the field of nanomedicine.

Original languageEnglish
Title of host publicationBiological Imaging and Sensing Using Nanoparticle Assemblies
Pages33-38
Number of pages6
Publication statusPublished - Oct 15 2010
Event2009 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 30 2009Dec 4 2009

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1241
ISSN (Print)0272-9172

Other

Other2009 MRS Fall Meeting
CountryUnited States
CityBoston, MA
Period11/30/0912/4/09

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'The effect of PEG grafted on gold nanorods and their injection dose on biodistribution in tumor-bearing mice'. Together they form a unique fingerprint.

Cite this