TY - GEN
T1 - The effect of the laser beam wavelength and pulse width on micro grooving
T2 - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
AU - Nonaka, Shinri
AU - Mori, Tastuhiro
AU - Takata, Yasuyuki
AU - Kohno, Masamichi
PY - 2012/12/1
Y1 - 2012/12/1
N2 - Processing technique of micro grooves and channels is very important to study the phenomenon of fluids in micro scale. Micro grooves and microchannels play an important role in various devices, such as μ-TAS (Micro-Total Analysis Systems) and micro reactors. Laser processing is currently widely used for drilling and grooving of various materials including metals, polymers, glasses and composite materials, since laser machining can avoid the problems that conventional machining methods have. For example wear of a working tool, lowering of processing accuracy, and wear debris becoming contaminants are some of the problems of the conventional method. Additionally, compared to other non-contact machining processes such as electron beam machining (EBM) and focused ion beam (FIB), machining a vacuum is not required. Therefore, applicability is wider and setup costs can be more economical.
AB - Processing technique of micro grooves and channels is very important to study the phenomenon of fluids in micro scale. Micro grooves and microchannels play an important role in various devices, such as μ-TAS (Micro-Total Analysis Systems) and micro reactors. Laser processing is currently widely used for drilling and grooving of various materials including metals, polymers, glasses and composite materials, since laser machining can avoid the problems that conventional machining methods have. For example wear of a working tool, lowering of processing accuracy, and wear debris becoming contaminants are some of the problems of the conventional method. Additionally, compared to other non-contact machining processes such as electron beam machining (EBM) and focused ion beam (FIB), machining a vacuum is not required. Therefore, applicability is wider and setup costs can be more economical.
UR - http://www.scopus.com/inward/record.url?scp=84882399402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84882399402&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2012-73135
DO - 10.1115/ICNMM2012-73135
M3 - Conference contribution
AN - SCOPUS:84882399402
SN - 9780791844793
T3 - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
SP - 275
EP - 280
BT - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
Y2 - 8 July 2012 through 12 July 2012
ER -