TY - JOUR
T1 - The effects of additives on the electrodeposition of a ZnZr oxide composite from dispersed particle-free solution + 1
AU - Hara, Yosuke
AU - Ueda, Daiki
AU - Oue, Satoshi
AU - Nakano, Hiroaki
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grant Number JP18H01753 and a Research Promotion Grant in 2017 from JFE 21st Century.
Publisher Copyright:
©2019 The Japan Institute of Metals and Materials.
PY - 2019
Y1 - 2019
N2 - Electrodeposition of a ZnZr oxide composite was performed under galvanostatic conditions from an unagitated sulfate solution containing Zn 2+ and Zr ions, as well as additives, such as NO 3 1 ions and polyethylene glycol (PEG), at pH 2 and 313 K. The effect of these additives on the codeposition of Zr oxide and its polarization behavior, as well as the microstructure of the deposits, was investigated. The Zr content in the deposits obtained at varying current densities increased significantly with the addition of 2.0 g·dm 13 of NaNO 3 . ZnZr oxide films deposited from the NaNO 3 -containing solution showed a massive structure composed of fine crystals without crystalline Zn platelets, although large cracks were observed between the large crystals. EDX analysis revealed that Zr codeposited on the massive crystals as a fine concave-convex oxide. The corrosion current density of the ZnZr oxide films deposited from the NaNO 3 -containing solution was almost the same as that of pure Zn deposits, showing that there is no improvement in corrosion resistance when Zn is codeposited with Zr oxide. Moreover, Zr content in the deposits obtained from the PEG-containing solution increased significantly along with increasing current density above 1000 A·m 12 . With the addition of 1000 mg·dm 13 of PEG, the crystalline Zn platelets disappeared, and the deposits were instead composed of fine mesh-like crystals with a preferred orientation of the f1010 gZn plane, resulting in a smooth surface. The cathodic current density for the reduction of dissolved oxygen on the ZnZr oxide films deposited from the PEG-containing solution was smaller than that of the pure Zn deposits, and as a result, the corrosion current density of the ZnZr oxide films was smaller than that of the pure Zn deposits. The increase in Zr content in the deposits with NO 3 1 ions and PEG is attributed to the acceleration of the hydrolysis of Zr ions.
AB - Electrodeposition of a ZnZr oxide composite was performed under galvanostatic conditions from an unagitated sulfate solution containing Zn 2+ and Zr ions, as well as additives, such as NO 3 1 ions and polyethylene glycol (PEG), at pH 2 and 313 K. The effect of these additives on the codeposition of Zr oxide and its polarization behavior, as well as the microstructure of the deposits, was investigated. The Zr content in the deposits obtained at varying current densities increased significantly with the addition of 2.0 g·dm 13 of NaNO 3 . ZnZr oxide films deposited from the NaNO 3 -containing solution showed a massive structure composed of fine crystals without crystalline Zn platelets, although large cracks were observed between the large crystals. EDX analysis revealed that Zr codeposited on the massive crystals as a fine concave-convex oxide. The corrosion current density of the ZnZr oxide films deposited from the NaNO 3 -containing solution was almost the same as that of pure Zn deposits, showing that there is no improvement in corrosion resistance when Zn is codeposited with Zr oxide. Moreover, Zr content in the deposits obtained from the PEG-containing solution increased significantly along with increasing current density above 1000 A·m 12 . With the addition of 1000 mg·dm 13 of PEG, the crystalline Zn platelets disappeared, and the deposits were instead composed of fine mesh-like crystals with a preferred orientation of the f1010 gZn plane, resulting in a smooth surface. The cathodic current density for the reduction of dissolved oxygen on the ZnZr oxide films deposited from the PEG-containing solution was smaller than that of the pure Zn deposits, and as a result, the corrosion current density of the ZnZr oxide films was smaller than that of the pure Zn deposits. The increase in Zr content in the deposits with NO 3 1 ions and PEG is attributed to the acceleration of the hydrolysis of Zr ions.
UR - http://www.scopus.com/inward/record.url?scp=85062412484&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062412484&partnerID=8YFLogxK
U2 - 10.2320/matertrans.M2018353
DO - 10.2320/matertrans.M2018353
M3 - Article
AN - SCOPUS:85062412484
VL - 60
SP - 297
EP - 305
JO - Materials Transactions
JF - Materials Transactions
SN - 0916-1821
IS - 2
ER -