TY - JOUR
T1 - The Holocene environmental changes in southern Indonesia reconstructed from highland caldera lake sediment in Bali Island
AU - Fukumoto, Yu
AU - Li, Xun
AU - Yasuda, Yoshinori
AU - Okamura, Makoto
AU - Yamada, Kazuyoshi
AU - Kashima, Kaoru
N1 - Funding Information:
We thank Ir. I G.P. Wirawan and I Wayan Ardika for support on coring Lake Buyan. We acknowledge A. Hayashida and Y. Hata for their measurement of magnetic susceptibility, and K. Seto in Shimane University for giving us the opportunity for CNS analysis. We appreciate the support of X. Sun and X. Xie in Tongji University for helping us on XRF core scan analysis, and A. Peltola in University of Turku for making thin section slides. We express gratitude for the members of department of radiology in Ako-Chuo Hospital for taking X-ray photos. This project was funded by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 24·3060 and 18100007 .
Publisher Copyright:
© 2015 Elsevier Ltd and INQUA.
PY - 2015/7/10
Y1 - 2015/7/10
N2 - Diatom, pollen, geomagnetic and geochemical analyses were carried out on a 3.6m long sediment core taken from Lake Buyan, a highland caldera lake in central Bali Island, to reconstruct the Holocene climate changes in equatorial southern Indonesia. The core represents ~8 thousand years sedimentation of organic-diatomaceous lake mud. Constant inclusion of benthic diatom fossils as main components indicated that suspension and inflow of littoral materials were the main sedimentary process. The core contained laminated sediments in two distinct intervals at 6.5-5.0 and 3.6-3.1calkyBP, and multi-proxy records showed generally drier climate in these sections especially at 3.6-3.1calkyBP. Lake bottom waters were more reducing condition in these laminated periods probably due to increased lake productivity by prolonged dry season and wind mixing. Laminae structures were made up of a layer composed of benthic diatoms and amorphous organic materials, and a layer made by only planktonic diatom fossils, each of which may represent rainy and dry period deposits. Although southern Indonesia shows clear Australian monsoon rainfall seasonality at present, counting of layer numbers showed interannual cycles of laminae formation. Prolonged dry seasons could obscured the rainfall seasonality in these periods, but precise depositional patterns were elusive. Unlaminated sections showed homogeneous sediment mixture of benthic, planktonic diatoms and more volume of terrigenous materials indicating wetter climate and seasonality similar to the present time. This was supported by the higher share of marsh environment pollens reflecting more stable lake level trends. The dry climate from 6.5calky BP was in line with the general perception of stronger ENSO dynamics from the mid Holocene due to weaker than before boreal summer insolation, but the sporadic appearances of dry periods imply the influence of regional climate forcings such as temporal migrations of inter tropical convergence zone (ITCZ). It was, however, possible that temporal shifts of large climate mode occurred in equatorial Pacific and Indian Oceans. Wettest climate was inferred from 3.1calkyBP to the present and this might reflect increased importance of Austral hemisphere atmospheric convection and subsequent southerly position of ITCZ in Austral summer time.
AB - Diatom, pollen, geomagnetic and geochemical analyses were carried out on a 3.6m long sediment core taken from Lake Buyan, a highland caldera lake in central Bali Island, to reconstruct the Holocene climate changes in equatorial southern Indonesia. The core represents ~8 thousand years sedimentation of organic-diatomaceous lake mud. Constant inclusion of benthic diatom fossils as main components indicated that suspension and inflow of littoral materials were the main sedimentary process. The core contained laminated sediments in two distinct intervals at 6.5-5.0 and 3.6-3.1calkyBP, and multi-proxy records showed generally drier climate in these sections especially at 3.6-3.1calkyBP. Lake bottom waters were more reducing condition in these laminated periods probably due to increased lake productivity by prolonged dry season and wind mixing. Laminae structures were made up of a layer composed of benthic diatoms and amorphous organic materials, and a layer made by only planktonic diatom fossils, each of which may represent rainy and dry period deposits. Although southern Indonesia shows clear Australian monsoon rainfall seasonality at present, counting of layer numbers showed interannual cycles of laminae formation. Prolonged dry seasons could obscured the rainfall seasonality in these periods, but precise depositional patterns were elusive. Unlaminated sections showed homogeneous sediment mixture of benthic, planktonic diatoms and more volume of terrigenous materials indicating wetter climate and seasonality similar to the present time. This was supported by the higher share of marsh environment pollens reflecting more stable lake level trends. The dry climate from 6.5calky BP was in line with the general perception of stronger ENSO dynamics from the mid Holocene due to weaker than before boreal summer insolation, but the sporadic appearances of dry periods imply the influence of regional climate forcings such as temporal migrations of inter tropical convergence zone (ITCZ). It was, however, possible that temporal shifts of large climate mode occurred in equatorial Pacific and Indian Oceans. Wettest climate was inferred from 3.1calkyBP to the present and this might reflect increased importance of Austral hemisphere atmospheric convection and subsequent southerly position of ITCZ in Austral summer time.
UR - http://www.scopus.com/inward/record.url?scp=84931571666&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84931571666&partnerID=8YFLogxK
U2 - 10.1016/j.quaint.2015.03.020
DO - 10.1016/j.quaint.2015.03.020
M3 - Article
AN - SCOPUS:84931571666
SN - 1040-6182
VL - 374
SP - 15
EP - 33
JO - Quaternary International
JF - Quaternary International
ER -