TY - JOUR
T1 - The homotopy types of PU(3)- and PSp(2)-gauge groups
AU - Hasui, Sho
AU - Kishimoto, Daisuke
AU - Kono, Akira
AU - Sato, Takashi
N1 - Publisher Copyright:
© 2016, Mathematical Sciences Publishers. All rights reserved.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Let G be a compact connected simple Lie group. Any principal G-bundle over S4 is classified by an integer k ∈ℤ≊π3(G), and we denote the corresponding gauge group by Gk(G). We prove that Gk(PU(3)) ≃ Gℓ(PU(3)) if and only if (24, k) = (24, ℓ), and Gk(PSp(2)) ≃(p) Gℓ(PSp(2)) for any prime p if and only if (40, k) = (40, ℓ), where (m, n) is the gcd of integers m, n.
AB - Let G be a compact connected simple Lie group. Any principal G-bundle over S4 is classified by an integer k ∈ℤ≊π3(G), and we denote the corresponding gauge group by Gk(G). We prove that Gk(PU(3)) ≃ Gℓ(PU(3)) if and only if (24, k) = (24, ℓ), and Gk(PSp(2)) ≃(p) Gℓ(PSp(2)) for any prime p if and only if (40, k) = (40, ℓ), where (m, n) is the gcd of integers m, n.
UR - http://www.scopus.com/inward/record.url?scp=84978971114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978971114&partnerID=8YFLogxK
U2 - 10.2140/agt.2016.16.1813
DO - 10.2140/agt.2016.16.1813
M3 - Article
AN - SCOPUS:84978971114
VL - 16
SP - 1813
EP - 1825
JO - Algebraic and Geometric Topology
JF - Algebraic and Geometric Topology
SN - 1472-2747
IS - 3
ER -