The impact of coronal mass ejections on the seasonal variation of the ionospheric critical frequency f0F2

Hussein M. Farid, Ramy Mawad, Essam Ghamry, Akimasa Yoshikawa

Research output: Contribution to journalArticlepeer-review

Abstract

We investigated the relations between the monthly average values of the critical frequency (f0F2) and the physical properties of the coronal mass ejections (CMEs), then we examined the seasonal variation of f0F2 values as an impact of the several CMEs properties. Given that, f0F2 were detected by PRJ18 (Puerto Rico) ionosonde station during the period 1996–2013. We found that the monthly average values of f0F2 are varying coherently with the sunspot number (SSN). A similar trend was found for f0F2 with the CMEs parameters such as the CME energy (linear correlation coefficient R = 0.73), width (R = 0.6) and the speed (R = 0.6). The arrived CMEs cause a plasma injection into the ionosphere, in turn, increasing the electron density, and consequently, f0F2 values. This happens in the high latitudes followed by the middle and lower latitudes. By examining the seasonal variation of f0F2, we found that the higher correlation between f0F2 and CMEs parameters occurs in the summer, then the equinoxes (spring and autumn), followed by the winter. However, the faster CMEs affect the ionosphere more efficiently in the spring more than in the summer, then the winter and the autumn seasons.

Original languageEnglish
Article number200
JournalUniverse
Volume6
Issue number11
DOIs
Publication statusPublished - Nov 2020

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'The impact of coronal mass ejections on the seasonal variation of the ionospheric critical frequency f<sub>0</sub>F2'. Together they form a unique fingerprint.

Cite this