TY - JOUR
T1 - The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear
AU - Adachi, Naoko
AU - Yoshida, Takamasa
AU - Nin, Fumiaki
AU - Ogata, Genki
AU - Yamaguchi, Soichiro
AU - Suzuki, Toshihiro
AU - Komune, Sizuo
AU - Hisa, Yasuo
AU - Hibino, Hiroshi
AU - Kurachi, Yoshihisa
PY - 2013/9
Y1 - 2013/9
N2 - The endocochlear potential (EP) of +80 mV in the scala media, which is indispensable for audition, is controlled by K+ transport across the lateral cochlear wall. This wall includes two epithelial barriers, the syncytium and the marginal cells. The former contains multiple cell types, such as fibrocytes, which are exposed to perilymph on their basolateral surfaces. The apical surfaces of the marginal cells face endolymph. Between the two barriers lies the intrastrial space (IS), an extracellular space with a low K+ concentration ([K+]) and a potential similar to the EP. This intrastrial potential (ISP) dominates the EP and represents the sum of the diffusion potential elicited by a large K+ gradient across the apical surface of the syncytium and the syncytium's potential, which is slightly positive relative to perilymph. Although a K+ transport system in fibrocytes seems to contribute to the EP, the mechanism remains uncertain. We examined the electrochemical properties of the lateral wall of guinea pigs with electrodes sensitive to potential and K+ while perfusing into the perilymph of the scala tympani blockers of Na+,K+-ATPase, the K+ pump thought to be essential to the system. Inhibiting Na+,K+-ATPase barely affected [K+] in the IS but greatly decreased [K+] within the syncytium, reducing the K+ gradient across its apical surface. The treatment hyperpolarized the syncytium only moderately. Consequently, both the ISP and the EP declined. Fibrocytes evidently use the Na+,K+-ATPase to achieve local K+ transport, maintaining the syncytium's high [K+] that is crucial for the K+ diffusion underlying the positive ISP.
AB - The endocochlear potential (EP) of +80 mV in the scala media, which is indispensable for audition, is controlled by K+ transport across the lateral cochlear wall. This wall includes two epithelial barriers, the syncytium and the marginal cells. The former contains multiple cell types, such as fibrocytes, which are exposed to perilymph on their basolateral surfaces. The apical surfaces of the marginal cells face endolymph. Between the two barriers lies the intrastrial space (IS), an extracellular space with a low K+ concentration ([K+]) and a potential similar to the EP. This intrastrial potential (ISP) dominates the EP and represents the sum of the diffusion potential elicited by a large K+ gradient across the apical surface of the syncytium and the syncytium's potential, which is slightly positive relative to perilymph. Although a K+ transport system in fibrocytes seems to contribute to the EP, the mechanism remains uncertain. We examined the electrochemical properties of the lateral wall of guinea pigs with electrodes sensitive to potential and K+ while perfusing into the perilymph of the scala tympani blockers of Na+,K+-ATPase, the K+ pump thought to be essential to the system. Inhibiting Na+,K+-ATPase barely affected [K+] in the IS but greatly decreased [K+] within the syncytium, reducing the K+ gradient across its apical surface. The treatment hyperpolarized the syncytium only moderately. Consequently, both the ISP and the EP declined. Fibrocytes evidently use the Na+,K+-ATPase to achieve local K+ transport, maintaining the syncytium's high [K+] that is crucial for the K+ diffusion underlying the positive ISP.
UR - http://www.scopus.com/inward/record.url?scp=84884290179&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884290179&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2013.258046
DO - 10.1113/jphysiol.2013.258046
M3 - Article
C2 - 23836687
AN - SCOPUS:84884290179
VL - 591
SP - 4459
EP - 4472
JO - Journal of Physiology
JF - Journal of Physiology
SN - 0022-3751
IS - 18
ER -