TY - JOUR
T1 - The Oberbeck–Boussinesq approximation as a constitutive limit
AU - Kagei, Yoshiyuki
AU - Růžička, Michael
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - We derive the usual Oberbeck–Boussinesq approximation as a constitutive limit of the full system describing the motion of an compressible linearly viscous fluid. To this end, the starting system is written, using the Gibbs free energy, in the variables v, θ and p. The Oberbeck–Boussinesq system is then obtained as the thermal expansion coefficient α and the isothermal compressibility coefficient β tend to zero.
AB - We derive the usual Oberbeck–Boussinesq approximation as a constitutive limit of the full system describing the motion of an compressible linearly viscous fluid. To this end, the starting system is written, using the Gibbs free energy, in the variables v, θ and p. The Oberbeck–Boussinesq system is then obtained as the thermal expansion coefficient α and the isothermal compressibility coefficient β tend to zero.
UR - http://www.scopus.com/inward/record.url?scp=84949638537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949638537&partnerID=8YFLogxK
U2 - 10.1007/s00161-015-0483-9
DO - 10.1007/s00161-015-0483-9
M3 - Article
AN - SCOPUS:84949638537
SN - 0935-1175
VL - 28
SP - 1411
EP - 1419
JO - Continuum Mechanics and Thermodynamics
JF - Continuum Mechanics and Thermodynamics
IS - 5
ER -