### Abstract

The slope conjecture proposed by Garoufalidis asserts that the Jones slopes given by the sequence of degrees of the coloured Jones polynomials are boundary slopes. We verify the slope conjecture for graph knots, i.e. knots whose Gromov volume vanish.

Original language | English |
---|---|

Pages (from-to) | 383-392 |

Number of pages | 10 |

Journal | Mathematical Proceedings of the Cambridge Philosophical Society |

Volume | 162 |

Issue number | 3 |

DOIs | |

Publication status | Published - May 1 2017 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Mathematics(all)

### Cite this

*Mathematical Proceedings of the Cambridge Philosophical Society*,

*162*(3), 383-392. https://doi.org/10.1017/S0305004116000566

**The slope conjecture for graph knots.** / Motegi, Kimihiko; Takata, Toshie.

Research output: Contribution to journal › Article

*Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 162, no. 3, pp. 383-392. https://doi.org/10.1017/S0305004116000566

}

TY - JOUR

T1 - The slope conjecture for graph knots

AU - Motegi, Kimihiko

AU - Takata, Toshie

PY - 2017/5/1

Y1 - 2017/5/1

N2 - The slope conjecture proposed by Garoufalidis asserts that the Jones slopes given by the sequence of degrees of the coloured Jones polynomials are boundary slopes. We verify the slope conjecture for graph knots, i.e. knots whose Gromov volume vanish.

AB - The slope conjecture proposed by Garoufalidis asserts that the Jones slopes given by the sequence of degrees of the coloured Jones polynomials are boundary slopes. We verify the slope conjecture for graph knots, i.e. knots whose Gromov volume vanish.

UR - http://www.scopus.com/inward/record.url?scp=84976591884&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84976591884&partnerID=8YFLogxK

U2 - 10.1017/S0305004116000566

DO - 10.1017/S0305004116000566

M3 - Article

VL - 162

SP - 383

EP - 392

JO - Mathematical Proceedings of the Cambridge Philosophical Society

JF - Mathematical Proceedings of the Cambridge Philosophical Society

SN - 0305-0041

IS - 3

ER -