The synergistic antitumor effect of combination therapy with a MEK inhibitor and YAP inhibitor on pERK-positive neuroblastoma

Masakazu Takemoto, Tomoko Tanaka, Ryota Tsuji, Yuichi Togashi, Mayumi Higashi, Shigehisa Fumino, Tatsuro Tajiri

Research output: Contribution to journalArticlepeer-review

Abstract

Background: We previously reported the in vitro and in vivo antitumor effects of trametinib, a MEK inhibitor, on neuroblastoma with MAPK pathway mutations. As we observed eventual resistance to trametinib in our previous study, we evaluated the combination therapy of CA3, a YAP inhibitor, with trametinib, based on a recent report suggesting the potential involvement of YAP in the mechanism underlying the resistance to trametinib in neuroblastoma. Methods: SK-N-AS cells (a neuroblastoma cell line harboring RAS mutation) were treated with CA3 in vitro and subjected to a viability assay, immunocytochemistry and flow cytometry. Next, we analyzed the in vitro combination effect of CA3 and trametinib using the CompuSyn software program. Finally, we administered CA3, trametinib or both to SK-N-AS xenograft mice for 10 weeks to analyze the combination effect. Results: CA3 inhibited cell proliferation by both cell cycle arrest and apoptosis in vitro. Combination of CA3 and trametinib induced a significant synergistic effect in vitro (Combination Index <1). Regarding the in vivo experiment, combination therapy suppressed tumor growth, and 100% of mice in the combination therapy group survived, whereas the survival rates were 0% in the CA3 group and 33% in the trametinib group. However, despite this promising survival rate in the combination group, the tumors gradually grew after seven weeks with MAPK reactivation. Conclusion: Our results indicated that CA3 and trametinib exerted synergistic antitumor effects on neuroblastoma in vitro and in vivo, and CA3 may be a viable option for concomitant drug therapy with trametinib, since it suppressed the resistance to trametinib. However, this combination effect was not sufficient to achieve complete remission. Therefore, we need to adjust the protocol to obtain a better outcome by determining the mechanism underlying regrowth in the future.

Original languageEnglish
Pages (from-to)41-46
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume570
DOIs
Publication statusPublished - Sep 17 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The synergistic antitumor effect of combination therapy with a MEK inhibitor and YAP inhibitor on pERK-positive neuroblastoma'. Together they form a unique fingerprint.

Cite this