Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery

Adhika Widyaparaga, Masashi Kuwamoto, Naoya Sakoda, Masamichi Kohno, Yasuyuki Takata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have developed a model capable of predicting the performance characteristics of a wiretype Joule-Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict evaporator temperature, temperature distribution and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated changing gas properties due to heat transfer within the heat exchanger and isenthalpic expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. Two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel, were tested and simulated. CO2 was used as the coolant gas in the calculations and experimental trials for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. Comparisons to experiments show that the model was successfully able to obtain a good degree of accuracy. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s therefore showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified.

Original languageEnglish
Title of host publicationASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010
Pages591-598
Number of pages8
EditionPARTS A AND B
DOIs
Publication statusPublished - Dec 1 2010
EventASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting - Montreal, QC, Canada
Duration: Aug 1 2010Aug 5 2010

Publication series

NameASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010
NumberPARTS A AND B

Other

OtherASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
CountryCanada
CityMontreal, QC
Period8/1/108/5/10

Fingerprint

Cryosurgery
Refrigerators
Polyether ether ketones
Gases
Heat transfer
Stainless Steel
Evaporators
Thermal load
Natural convection
Coolants
Turbulent flow
Heat exchangers
Temperature distribution
Stainless steel
Flow rate
Vacuum
Cooling
Radiation
Temperature
Experiments

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Cite this

Widyaparaga, A., Kuwamoto, M., Sakoda, N., Kohno, M., & Takata, Y. (2010). Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010 (PARTS A AND B ed., pp. 591-598). (ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010; No. PARTS A AND B). https://doi.org/10.1115/FEDSM-ICNMM2010-30127

Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery. / Widyaparaga, Adhika; Kuwamoto, Masashi; Sakoda, Naoya; Kohno, Masamichi; Takata, Yasuyuki.

ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. PARTS A AND B. ed. 2010. p. 591-598 (ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010; No. PARTS A AND B).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Widyaparaga, A, Kuwamoto, M, Sakoda, N, Kohno, M & Takata, Y 2010, Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery. in ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. PARTS A AND B edn, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, no. PARTS A AND B, pp. 591-598, ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, Canada, 8/1/10. https://doi.org/10.1115/FEDSM-ICNMM2010-30127
Widyaparaga A, Kuwamoto M, Sakoda N, Kohno M, Takata Y. Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. PARTS A AND B ed. 2010. p. 591-598. (ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010; PARTS A AND B). https://doi.org/10.1115/FEDSM-ICNMM2010-30127
Widyaparaga, Adhika ; Kuwamoto, Masashi ; Sakoda, Naoya ; Kohno, Masamichi ; Takata, Yasuyuki. / Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. PARTS A AND B. ed. 2010. pp. 591-598 (ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010; PARTS A AND B).
@inproceedings{bbd25d7b65b641398db68fff0c5aa7b9,
title = "Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery",
abstract = "We have developed a model capable of predicting the performance characteristics of a wiretype Joule-Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict evaporator temperature, temperature distribution and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated changing gas properties due to heat transfer within the heat exchanger and isenthalpic expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. Two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel, were tested and simulated. CO2 was used as the coolant gas in the calculations and experimental trials for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. Comparisons to experiments show that the model was successfully able to obtain a good degree of accuracy. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s therefore showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified.",
author = "Adhika Widyaparaga and Masashi Kuwamoto and Naoya Sakoda and Masamichi Kohno and Yasuyuki Takata",
year = "2010",
month = "12",
day = "1",
doi = "10.1115/FEDSM-ICNMM2010-30127",
language = "English",
isbn = "9780791854501",
series = "ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010",
number = "PARTS A AND B",
pages = "591--598",
booktitle = "ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010",
edition = "PARTS A AND B",

}

TY - GEN

T1 - Theoretical study of a flexible wiretype Joule Thomson micro-refrigerator for use in cryosurgery

AU - Widyaparaga, Adhika

AU - Kuwamoto, Masashi

AU - Sakoda, Naoya

AU - Kohno, Masamichi

AU - Takata, Yasuyuki

PY - 2010/12/1

Y1 - 2010/12/1

N2 - We have developed a model capable of predicting the performance characteristics of a wiretype Joule-Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict evaporator temperature, temperature distribution and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated changing gas properties due to heat transfer within the heat exchanger and isenthalpic expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. Two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel, were tested and simulated. CO2 was used as the coolant gas in the calculations and experimental trials for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. Comparisons to experiments show that the model was successfully able to obtain a good degree of accuracy. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s therefore showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified.

AB - We have developed a model capable of predicting the performance characteristics of a wiretype Joule-Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict evaporator temperature, temperature distribution and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated changing gas properties due to heat transfer within the heat exchanger and isenthalpic expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. Two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel, were tested and simulated. CO2 was used as the coolant gas in the calculations and experimental trials for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. Comparisons to experiments show that the model was successfully able to obtain a good degree of accuracy. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s therefore showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified.

UR - http://www.scopus.com/inward/record.url?scp=84856006736&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856006736&partnerID=8YFLogxK

U2 - 10.1115/FEDSM-ICNMM2010-30127

DO - 10.1115/FEDSM-ICNMM2010-30127

M3 - Conference contribution

AN - SCOPUS:84856006736

SN - 9780791854501

T3 - ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010

SP - 591

EP - 598

BT - ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010

ER -