Theoretical study of stability, structures, and aromaticity of multiply N-confused porphyrins

H. Furuta, H. Maeda, A. Osuka

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)

Abstract

The total electronic energy and nucleus-independent chemical shift (NICS) of 95 isomers of N-confused porphyrin (NCP: normal porphyrin (N0CP), singly N-confused porphyrin (N1CP), doubly N-confused porphyrin (N2CP), triply N-confused porphyrin (N3CP), and fully N-confused porphyrin (N4CP)) have been calculated by the density functional theory (DFT) method. The stability of NCP decreased by increasing the number of confused pyrrole rings. Namely, the relative energies of the most stable isomers in each confusion level increased in a stepwise manner approximately by +18 kcal/mol: 0 (N0CP1), +17.147 (N1CP2), +37.461 (N2CPb3), +54.031 (N3CPd6), and +65.636 kcal/mol (N4CPc8). In this order, the mean plane deviation of these isomers increased from 0.000 to 0.123, 0.170, 0.215, and 0.251 Å, respectively. The unusual tautomeric forms of pyrrole ring with an sp3-carbon were found in the stable forms of N3CP and N4CP. The NICS values at the mean position of the 24 core atoms were nearly the same for the most aromatic isomers regardless of the confusion level: -15.1280 (N0CP1), -13.8493 (N1CP2), -13.7267 (N2CPd1), -11.7723 (N3CPb5), and -13.6224 ppm (N4CPa6). The positive correlation between aromaticity and stability was inferred from the plots of NICS and the relative energy of NCP for N0CP, N1CP, and trans-N2CP. On the other hand, the correlation was negative for cis-N2CP, N3CP, and N4CP isomers.

Original languageEnglish
Pages (from-to)8563-8572
Number of pages10
JournalJournal of Organic Chemistry
Volume66
Issue number25
DOIs
Publication statusPublished - Dec 14 2001
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Theoretical study of stability, structures, and aromaticity of multiply N-confused porphyrins'. Together they form a unique fingerprint.

Cite this